Spaces:
Runtime error
Runtime error
techdrizzdev
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
from datetime import datetime
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
from qwen_vl_utils import process_vision_info
|
8 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
|
9 |
+
from PIL import Image
|
10 |
+
import ast
|
11 |
+
import os
|
12 |
+
from datetime import datetime
|
13 |
+
import numpy as np
|
14 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
15 |
+
import gradio as gr
|
16 |
+
import time
|
17 |
+
|
18 |
+
# Define constants
|
19 |
+
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
|
20 |
+
MIN_PIXELS = 256 * 28 * 28
|
21 |
+
MAX_PIXELS = 1344 * 28 * 28
|
22 |
+
|
23 |
+
# Specify the model repository and destination folder
|
24 |
+
model_repo = "showlab/ShowUI-2B"
|
25 |
+
destination_folder = "./showui-2b"
|
26 |
+
|
27 |
+
# Ensure the destination folder exists
|
28 |
+
os.makedirs(destination_folder, exist_ok=True)
|
29 |
+
|
30 |
+
# List all files in the repository
|
31 |
+
files = list_repo_files(repo_id=model_repo)
|
32 |
+
|
33 |
+
# Download each file to the destination folder
|
34 |
+
for file in files:
|
35 |
+
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
|
36 |
+
print(f"Downloaded {file} to {file_path}")
|
37 |
+
|
38 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
39 |
+
"./showui-2b",
|
40 |
+
# "showlab/ShowUI-2B",
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map="cuda",
|
43 |
+
)
|
44 |
+
|
45 |
+
# Load the processor
|
46 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
|
47 |
+
|
48 |
+
model_moon = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", revision="2025-01-09", trust_remote_code=True, device_map={"": "cuda"})
|
49 |
+
|
50 |
+
|
51 |
+
# Helper functions
|
52 |
+
def draw_point(image_input, point=None, radius=5):
|
53 |
+
"""Draw a point on the image."""
|
54 |
+
if isinstance(image_input, str):
|
55 |
+
image = Image.open(image_input)
|
56 |
+
else:
|
57 |
+
image = Image.fromarray(np.uint8(image_input))
|
58 |
+
|
59 |
+
if point:
|
60 |
+
x, y = point[0] * image.width, point[1] * image.height
|
61 |
+
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill="red")
|
62 |
+
return image
|
63 |
+
|
64 |
+
|
65 |
+
def array_to_image_path(image_array):
|
66 |
+
"""Save the uploaded image and return its path."""
|
67 |
+
if image_array is None:
|
68 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
69 |
+
img = Image.fromarray(np.uint8(image_array))
|
70 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
71 |
+
filename = f"image_{timestamp}.png"
|
72 |
+
img.save(filename)
|
73 |
+
return os.path.abspath(filename)
|
74 |
+
|
75 |
+
|
76 |
+
def infer_moon(img, query):
|
77 |
+
start = time.time()
|
78 |
+
image = Image.fromarray(np.uint8(img))
|
79 |
+
points = model_moon.point(image, query)["points"]
|
80 |
+
converted_data = [round(points[0]["x"], 2), round(points[0]["y"], 2)]
|
81 |
+
end = time.time()
|
82 |
+
total_time = end - start
|
83 |
+
return converted_data, f"{round(total_time, 2)} seconds"
|
84 |
+
|
85 |
+
|
86 |
+
def infer_showui(image_path, query):
|
87 |
+
start = time.time()
|
88 |
+
messages = [
|
89 |
+
{
|
90 |
+
"role": "user",
|
91 |
+
"content": [
|
92 |
+
{"type": "text", "text": _SYSTEM},
|
93 |
+
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
|
94 |
+
{"type": "text", "text": query},
|
95 |
+
],
|
96 |
+
}
|
97 |
+
]
|
98 |
+
|
99 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
100 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
101 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
102 |
+
inputs = inputs.to("cuda")
|
103 |
+
|
104 |
+
# Generate output
|
105 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
106 |
+
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
107 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
108 |
+
|
109 |
+
# Parse the output into coordinates
|
110 |
+
click_xy = ast.literal_eval(output_text)
|
111 |
+
end = time.time()
|
112 |
+
total_time = end - start
|
113 |
+
return click_xy, f"{round(total_time, 2)} seconds"
|
114 |
+
|
115 |
+
|
116 |
+
def run(image, query):
|
117 |
+
"""Main function for inference."""
|
118 |
+
image_path = array_to_image_path(image)
|
119 |
+
moon, time_taken_moon = infer_moon(image, query)
|
120 |
+
showui, time_taken_showui = infer_showui(image_path, query)
|
121 |
+
|
122 |
+
# Draw the point on the image
|
123 |
+
result_image = draw_point(image_path, showui, radius=10)
|
124 |
+
result_moon_image = draw_point(image_path, moon, radius=10)
|
125 |
+
return result_image, time_taken_showui, result_moon_image, time_taken_moon
|
126 |
+
|
127 |
+
|
128 |
+
def build_demo():
|
129 |
+
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
|
130 |
+
# State to store the consistent image path
|
131 |
+
state_image_path = gr.State(value=None)
|
132 |
+
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column(scale=3):
|
135 |
+
# Input components
|
136 |
+
imagebox = gr.Image(type="numpy", label="Input Screenshot")
|
137 |
+
textbox = gr.Textbox(
|
138 |
+
show_label=True,
|
139 |
+
placeholder="Enter a query (e.g., 'Click Nahant')",
|
140 |
+
label="Query",
|
141 |
+
)
|
142 |
+
submit_btn = gr.Button(value="Submit", variant="primary")
|
143 |
+
|
144 |
+
# Placeholder examples
|
145 |
+
gr.Examples(
|
146 |
+
examples=[
|
147 |
+
["./examples/app_store.png", "Download Kindle."],
|
148 |
+
["./examples/ios_setting.png", "Turn off Do not disturb."],
|
149 |
+
["./examples/image_13.png", "Tap on vehicle search."],
|
150 |
+
["./examples/map.png", "Boston."],
|
151 |
+
["./examples/wallet.png", "Scan a QR code."],
|
152 |
+
["./examples/word.png", "More shapes."],
|
153 |
+
["./examples/web_shopping.png", "Proceed to checkout."],
|
154 |
+
["./examples/web_forum.png", "Post my comment."],
|
155 |
+
["./examples/safari_google.png", "Click on search bar."],
|
156 |
+
],
|
157 |
+
inputs=[imagebox, textbox],
|
158 |
+
examples_per_page=3,
|
159 |
+
)
|
160 |
+
|
161 |
+
with gr.Column(scale=8):
|
162 |
+
# Output components
|
163 |
+
output_img1 = gr.Image(type="pil", label="Show UI Output")
|
164 |
+
output_time1 = gr.Text(label="showui inference time")
|
165 |
+
output_img2 = gr.Image(type="pil", label="Moon dream Output")
|
166 |
+
output_time2 = gr.Text(label="moondream inference time")
|
167 |
+
|
168 |
+
# Add a note below the images to explain the red point
|
169 |
+
gr.HTML(
|
170 |
+
"""
|
171 |
+
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output images represents the predicted clickable coordinates.</p>
|
172 |
+
"""
|
173 |
+
)
|
174 |
+
|
175 |
+
# Buttons for voting, flagging, regenerating, and clearing
|
176 |
+
with gr.Row(elem_id="action-buttons", equal_height=True):
|
177 |
+
regenerate_btn = gr.Button(value="🔄 Regenerate", variant="secondary")
|
178 |
+
clear_btn = gr.Button(value="🗑️ Clear", interactive=True) # Combined Clear button
|
179 |
+
|
180 |
+
# Define button actions
|
181 |
+
def on_submit(image, query):
|
182 |
+
"""Handle the submit button click."""
|
183 |
+
if image is None:
|
184 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
185 |
+
|
186 |
+
# Generate consistent image path and store it in the state
|
187 |
+
image_path = array_to_image_path(image)
|
188 |
+
return run(image, query) + (image_path,)
|
189 |
+
|
190 |
+
submit_btn.click(
|
191 |
+
on_submit,
|
192 |
+
[imagebox, textbox],
|
193 |
+
[output_img1, output_time1, output_img2, output_time2, state_image_path],
|
194 |
+
)
|
195 |
+
|
196 |
+
clear_btn.click(
|
197 |
+
lambda: (None, None, None, None, None),
|
198 |
+
inputs=None,
|
199 |
+
outputs=[imagebox, textbox, output_img1, output_img2, state_image_path], # Clear all outputs
|
200 |
+
queue=False,
|
201 |
+
)
|
202 |
+
|
203 |
+
regenerate_btn.click(
|
204 |
+
lambda image, query, state_image_path: run(image, query),
|
205 |
+
[imagebox, textbox, state_image_path],
|
206 |
+
[output_img1, output_time1, output_img2, output_time2],
|
207 |
+
)
|
208 |
+
|
209 |
+
return demo
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
demo = build_demo()
|
214 |
+
demo.queue(api_open=False).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False, debug=True, share=True)
|