Spaces:
Running
Running
""" | |
Author: Luigi Piccinelli | |
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
""" | |
import importlib | |
from copy import deepcopy | |
from math import ceil | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from einops import rearrange | |
from huggingface_hub import PyTorchModelHubMixin | |
from unidepth.models.unidepthv1.decoder import Decoder | |
from unidepth.utils.constants import (IMAGENET_DATASET_MEAN, | |
IMAGENET_DATASET_STD) | |
from unidepth.utils.distributed import is_main_process | |
from unidepth.utils.geometric import (generate_rays, | |
spherical_zbuffer_to_euclidean) | |
from unidepth.utils.misc import get_params | |
MAP_BACKBONES = {"ViTL14": "vitl14", "ConvNextL": "cnvnxtl"} | |
# inference helpers | |
def _paddings(image_shape, network_shape): | |
cur_h, cur_w = image_shape | |
h, w = network_shape | |
pad_top, pad_bottom = (h - cur_h) // 2, h - cur_h - (h - cur_h) // 2 | |
pad_left, pad_right = (w - cur_w) // 2, w - cur_w - (w - cur_w) // 2 | |
return pad_left, pad_right, pad_top, pad_bottom | |
def _shapes(image_shape, network_shape): | |
h, w = image_shape | |
input_ratio = w / h | |
output_ratio = network_shape[1] / network_shape[0] | |
if output_ratio > input_ratio: | |
ratio = network_shape[0] / h | |
elif output_ratio <= input_ratio: | |
ratio = network_shape[1] / w | |
return (ceil(h * ratio - 0.5), ceil(w * ratio - 0.5)), ratio | |
def _preprocess(rgbs, intrinsics, shapes, pads, ratio, output_shapes): | |
(pad_left, pad_right, pad_top, pad_bottom) = pads | |
rgbs = F.interpolate( | |
rgbs, size=shapes, mode="bilinear", align_corners=False, antialias=True | |
) | |
rgbs = F.pad(rgbs, (pad_left, pad_right, pad_top, pad_bottom), mode="constant") | |
if intrinsics is not None: | |
intrinsics = intrinsics.clone() | |
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio | |
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio | |
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio + pad_left | |
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio + pad_top | |
return rgbs, intrinsics | |
return rgbs, None | |
def _postprocess(predictions, intrinsics, shapes, pads, ratio, original_shapes): | |
(pad_left, pad_right, pad_top, pad_bottom) = pads | |
# pred mean, trim paddings, and upsample to input dim | |
predictions = sum( | |
[ | |
F.interpolate( | |
x.clone(), | |
size=shapes, | |
mode="bilinear", | |
align_corners=False, | |
antialias=True, | |
) | |
for x in predictions | |
] | |
) / len(predictions) | |
predictions = predictions[ | |
..., pad_top : shapes[0] - pad_bottom, pad_left : shapes[1] - pad_right | |
] | |
predictions = F.interpolate( | |
predictions, | |
size=original_shapes, | |
mode="bilinear", | |
align_corners=False, | |
antialias=True, | |
) | |
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] / ratio | |
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] / ratio | |
intrinsics[:, 0, 2] = (intrinsics[:, 0, 2] - pad_left) / ratio | |
intrinsics[:, 1, 2] = (intrinsics[:, 1, 2] - pad_top) / ratio | |
return predictions, intrinsics | |
class UniDepthV1( | |
nn.Module, | |
PyTorchModelHubMixin, | |
library_name="UniDepth", | |
repo_url="https://github.com/lpiccinelli-eth/UniDepth", | |
tags=["monocular-metric-depth-estimation"], | |
): | |
def __init__( | |
self, | |
config, | |
eps: float = 1e-6, | |
**kwargs, | |
): | |
super().__init__() | |
self.build(config) | |
self.eps = eps | |
def forward(self, inputs, image_metas=None): | |
rgbs = inputs['image'] | |
gt_intrinsics = inputs.get('K') | |
H, W = rgbs.shape[-2:] | |
# Encode | |
encoder_outputs, cls_tokens = self.pixel_encoder(rgbs) | |
if "dino" in self.pixel_encoder.__class__.__name__.lower(): | |
encoder_outputs = [ | |
(x + y.unsqueeze(1)).contiguous() | |
for x, y in zip(encoder_outputs, cls_tokens) | |
] | |
inputs["encoder_outputs"] = encoder_outputs | |
inputs["cls_tokens"] = cls_tokens | |
# Get camera infos, if any | |
if gt_intrinsics is not None: | |
rays, angles = generate_rays( | |
gt_intrinsics, self.image_shape, noisy=self.training | |
) | |
inputs["rays"] = rays | |
inputs["angles"] = angles | |
inputs["K"] = gt_intrinsics | |
self.pixel_decoder.test_fixed_camera = True # use GT camera in fwd | |
# Decode | |
pred_intrinsics, predictions, _ = self.pixel_decoder(inputs, {}) | |
predictions = sum( | |
[ | |
F.interpolate( | |
x.clone(), | |
size=self.image_shape, | |
mode="bilinear", | |
align_corners=False, | |
antialias=True, | |
) | |
for x in predictions | |
] | |
) / len(predictions) | |
# Final 3D points backprojection | |
pred_angles = generate_rays(pred_intrinsics, (H, W), noisy=False)[-1] | |
# You may want to use inputs["angles"] if available? | |
pred_angles = rearrange(pred_angles, "b (h w) c -> b c h w", h=H, w=W) | |
pred_angles = F.interpolate( | |
pred_angles.clone(), | |
size=self.image_shape, | |
mode="bilinear", | |
align_corners=False, | |
antialias=True, | |
) | |
points_3d = torch.cat((pred_angles, predictions), dim=1) | |
points_3d = spherical_zbuffer_to_euclidean( | |
points_3d.permute(0, 2, 3, 1) | |
).permute(0, 3, 1, 2) | |
# Output data, use for loss computation | |
outputs = { | |
"angles": pred_angles, | |
"intrinsics": pred_intrinsics, | |
"points": points_3d, | |
"depth": predictions.squeeze(1), | |
} | |
self.pixel_decoder.test_fixed_camera = False | |
return outputs | |
def infer(self, rgbs: torch.Tensor, intrinsics=None, skip_camera=False): | |
if rgbs.ndim == 3: | |
rgbs = rgbs.unsqueeze(0) | |
if intrinsics is not None and intrinsics.ndim == 2: | |
intrinsics = intrinsics.unsqueeze(0) | |
B, _, H, W = rgbs.shape | |
rgbs = rgbs.to(self.device) | |
if intrinsics is not None: | |
intrinsics = intrinsics.to(self.device) | |
# process image and intrinsiscs (if any) to match network input (slow?) | |
if rgbs.max() > 5 or rgbs.dtype == torch.uint8: | |
rgbs = rgbs.to(torch.float32).div(255) | |
if rgbs.min() >= 0.0 and rgbs.max() <= 1.0: | |
rgbs = TF.normalize( | |
rgbs, | |
mean=IMAGENET_DATASET_MEAN, | |
std=IMAGENET_DATASET_STD, | |
) | |
(h, w), ratio = _shapes((H, W), self.image_shape) | |
pad_left, pad_right, pad_top, pad_bottom = _paddings((h, w), self.image_shape) | |
rgbs, gt_intrinsics = _preprocess( | |
rgbs, | |
intrinsics, | |
(h, w), | |
(pad_left, pad_right, pad_top, pad_bottom), | |
ratio, | |
self.image_shape, | |
) | |
# run encoder | |
encoder_outputs, cls_tokens = self.pixel_encoder(rgbs) | |
if "dino" in self.pixel_encoder.__class__.__name__.lower(): | |
encoder_outputs = [ | |
(x + y.unsqueeze(1)).contiguous() | |
for x, y in zip(encoder_outputs, cls_tokens) | |
] | |
# get data for decoder and adapt to given camera | |
inputs = {} | |
inputs["encoder_outputs"] = encoder_outputs | |
inputs["cls_tokens"] = cls_tokens | |
inputs["image"] = rgbs | |
if gt_intrinsics is not None: | |
rays, angles = generate_rays( | |
gt_intrinsics, self.image_shape, noisy=self.training | |
) | |
inputs["rays"] = rays | |
inputs["angles"] = angles | |
inputs["K"] = gt_intrinsics | |
self.pixel_decoder.test_fixed_camera = True | |
self.pixel_decoder.skip_camera = skip_camera | |
# decode all | |
pred_intrinsics, predictions, _ = self.pixel_decoder(inputs, {}) | |
# undo the reshaping and get original image size (slow) | |
predictions, pred_intrinsics = _postprocess( | |
predictions, | |
pred_intrinsics, | |
self.image_shape, | |
(pad_left, pad_right, pad_top, pad_bottom), | |
ratio, | |
(H, W), | |
) | |
# final 3D points backprojection | |
intrinsics = gt_intrinsics if gt_intrinsics is not None else pred_intrinsics | |
angles = generate_rays(intrinsics, (H, W), noisy=False)[-1] | |
angles = rearrange(angles, "b (h w) c -> b c h w", h=H, w=W) | |
points_3d = torch.cat((angles, predictions), dim=1) | |
points_3d = spherical_zbuffer_to_euclidean( | |
points_3d.permute(0, 2, 3, 1) | |
).permute(0, 3, 1, 2) | |
# output data | |
outputs = { | |
"intrinsics": pred_intrinsics, | |
"points": points_3d, | |
"depth": predictions[:, -1:], | |
} | |
self.pixel_decoder.test_fixed_camera = False | |
self.pixel_decoder.skip_camera = False | |
return outputs | |
def load_pretrained(self, model_file): | |
device = ( | |
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
) | |
dict_model = torch.load(model_file, map_location=device) | |
if "model" in dict_model: | |
dict_model = dict_model["model"] | |
new_state_dict = deepcopy( | |
{k.replace("module.", ""): v for k, v in dict_model.items()} | |
) | |
info = self.load_state_dict(new_state_dict, strict=False) | |
if is_main_process(): | |
print( | |
f"Loaded from {model_file} for {self.__class__.__name__} results in:", | |
info, | |
) | |
def get_params(self, config): | |
if hasattr(self.pixel_encoder, "get_params"): | |
encoder_p, encoder_lr = self.pixel_encoder.get_params( | |
config["model"]["pixel_encoder"]["lr"], | |
config["training"]["wd"], | |
config["training"]["ld"], | |
) | |
else: | |
encoder_p, encoder_lr = get_params( | |
self.pixel_encoder, | |
config["model"]["pixel_encoder"]["lr"], | |
config["training"]["wd"], | |
) | |
decoder_p, decoder_lr = get_params( | |
self.pixel_decoder, config["training"]["lr"], config["training"]["wd"] | |
) | |
return [*encoder_p, *decoder_p], [*encoder_lr, *decoder_lr] | |
def device(self): | |
return next(self.parameters()).device | |
def build(self, config): | |
mod = importlib.import_module("unidepth.models.encoder") | |
pixel_encoder_factory = getattr(mod, config["model"]["pixel_encoder"]["name"]) | |
pixel_encoder_config = { | |
**config["training"], | |
**config["data"], | |
**config["model"]["pixel_encoder"], | |
"interpolate_offset": 0.1, | |
} | |
pixel_encoder = pixel_encoder_factory(pixel_encoder_config) | |
config["model"]["pixel_encoder"]["patch_size"] = ( | |
14 if "dino" in config["model"]["pixel_encoder"]["name"] else 16 | |
) | |
pixel_encoder_embed_dims = ( | |
pixel_encoder.embed_dims | |
if hasattr(pixel_encoder, "embed_dims") | |
else [getattr(pixel_encoder, "embed_dim") * 2**i for i in range(4)] | |
) | |
config["model"]["pixel_encoder"]["embed_dim"] = getattr( | |
pixel_encoder, "embed_dim" | |
) | |
config["model"]["pixel_encoder"]["embed_dims"] = pixel_encoder_embed_dims | |
config["model"]["pixel_encoder"]["depths"] = pixel_encoder.depths | |
self.pixel_encoder = pixel_encoder | |
self.pixel_decoder = Decoder(config) | |
self.image_shape = config["data"]["image_shape"] | |