File size: 11,986 Bytes
560b597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""

import importlib
from copy import deepcopy
from math import ceil

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange
from huggingface_hub import PyTorchModelHubMixin

from unidepth.models.unidepthv1.decoder import Decoder
from unidepth.utils.constants import (IMAGENET_DATASET_MEAN,
                                      IMAGENET_DATASET_STD)
from unidepth.utils.distributed import is_main_process
from unidepth.utils.geometric import (generate_rays,
                                      spherical_zbuffer_to_euclidean)
from unidepth.utils.misc import get_params

MAP_BACKBONES = {"ViTL14": "vitl14", "ConvNextL": "cnvnxtl"}


# inference helpers
def _paddings(image_shape, network_shape):
    cur_h, cur_w = image_shape
    h, w = network_shape
    pad_top, pad_bottom = (h - cur_h) // 2, h - cur_h - (h - cur_h) // 2
    pad_left, pad_right = (w - cur_w) // 2, w - cur_w - (w - cur_w) // 2
    return pad_left, pad_right, pad_top, pad_bottom


def _shapes(image_shape, network_shape):
    h, w = image_shape
    input_ratio = w / h
    output_ratio = network_shape[1] / network_shape[0]
    if output_ratio > input_ratio:
        ratio = network_shape[0] / h
    elif output_ratio <= input_ratio:
        ratio = network_shape[1] / w
    return (ceil(h * ratio - 0.5), ceil(w * ratio - 0.5)), ratio


def _preprocess(rgbs, intrinsics, shapes, pads, ratio, output_shapes):
    (pad_left, pad_right, pad_top, pad_bottom) = pads
    rgbs = F.interpolate(
        rgbs, size=shapes, mode="bilinear", align_corners=False, antialias=True
    )
    rgbs = F.pad(rgbs, (pad_left, pad_right, pad_top, pad_bottom), mode="constant")
    if intrinsics is not None:
        intrinsics = intrinsics.clone()
        intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
        intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
        intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio + pad_left
        intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio + pad_top
        return rgbs, intrinsics
    return rgbs, None


def _postprocess(predictions, intrinsics, shapes, pads, ratio, original_shapes):
    (pad_left, pad_right, pad_top, pad_bottom) = pads
    # pred mean, trim paddings, and upsample to input dim
    predictions = sum(
        [
            F.interpolate(
                x.clone(),
                size=shapes,
                mode="bilinear",
                align_corners=False,
                antialias=True,
            )
            for x in predictions
        ]
    ) / len(predictions)
    predictions = predictions[
        ..., pad_top : shapes[0] - pad_bottom, pad_left : shapes[1] - pad_right
    ]
    predictions = F.interpolate(
        predictions,
        size=original_shapes,
        mode="bilinear",
        align_corners=False,
        antialias=True,
    )
    intrinsics[:, 0, 0] = intrinsics[:, 0, 0] / ratio
    intrinsics[:, 1, 1] = intrinsics[:, 1, 1] / ratio
    intrinsics[:, 0, 2] = (intrinsics[:, 0, 2] - pad_left) / ratio
    intrinsics[:, 1, 2] = (intrinsics[:, 1, 2] - pad_top) / ratio
    return predictions, intrinsics


class UniDepthV1(
    nn.Module,
    PyTorchModelHubMixin,
    library_name="UniDepth",
    repo_url="https://github.com/lpiccinelli-eth/UniDepth",
    tags=["monocular-metric-depth-estimation"],
):
    def __init__(
        self,
        config,
        eps: float = 1e-6,
        **kwargs,
    ):
        super().__init__()
        self.build(config)
        self.eps = eps

    def forward(self, inputs, image_metas=None):
        rgbs = inputs['image']
        gt_intrinsics = inputs.get('K')
        H, W = rgbs.shape[-2:]

        # Encode
        encoder_outputs, cls_tokens = self.pixel_encoder(rgbs)
        if "dino" in self.pixel_encoder.__class__.__name__.lower():
            encoder_outputs = [
                (x + y.unsqueeze(1)).contiguous()
                for x, y in zip(encoder_outputs, cls_tokens)
            ]
        inputs["encoder_outputs"] = encoder_outputs
        inputs["cls_tokens"] = cls_tokens

        # Get camera infos, if any
        if gt_intrinsics is not None:
            rays, angles = generate_rays(
                gt_intrinsics, self.image_shape, noisy=self.training
            )
            inputs["rays"] = rays
            inputs["angles"] = angles
            inputs["K"] = gt_intrinsics
            self.pixel_decoder.test_fixed_camera = True  # use GT camera in fwd

        # Decode
        pred_intrinsics, predictions, _ = self.pixel_decoder(inputs, {})
        predictions = sum(
            [
                F.interpolate(
                    x.clone(),
                    size=self.image_shape,
                    mode="bilinear",
                    align_corners=False,
                    antialias=True,
                )
                for x in predictions
            ]
        ) / len(predictions)

        # Final 3D points backprojection
        pred_angles = generate_rays(pred_intrinsics, (H, W), noisy=False)[-1]
        # You may want to use inputs["angles"] if available?
        pred_angles = rearrange(pred_angles, "b (h w) c -> b c h w", h=H, w=W)
        pred_angles = F.interpolate(
                    pred_angles.clone(),
                    size=self.image_shape,
                    mode="bilinear",
                    align_corners=False,
                    antialias=True,
                )

        points_3d = torch.cat((pred_angles, predictions), dim=1)
        points_3d = spherical_zbuffer_to_euclidean(
            points_3d.permute(0, 2, 3, 1)
        ).permute(0, 3, 1, 2)

        # Output data, use for loss computation
        outputs = {
            "angles": pred_angles,
            "intrinsics": pred_intrinsics,
            "points": points_3d,
            "depth": predictions.squeeze(1),
        }
        self.pixel_decoder.test_fixed_camera = False
        return outputs

    @torch.no_grad()
    def infer(self, rgbs: torch.Tensor, intrinsics=None, skip_camera=False):
        if rgbs.ndim == 3:
            rgbs = rgbs.unsqueeze(0)
        if intrinsics is not None and intrinsics.ndim == 2:
            intrinsics = intrinsics.unsqueeze(0)
        B, _, H, W = rgbs.shape

        rgbs = rgbs.to(self.device)
        if intrinsics is not None:
            intrinsics = intrinsics.to(self.device)

        # process image and intrinsiscs (if any) to match network input (slow?)
        if rgbs.max() > 5 or rgbs.dtype == torch.uint8:
            rgbs = rgbs.to(torch.float32).div(255)
        if rgbs.min() >= 0.0 and rgbs.max() <= 1.0:
            rgbs = TF.normalize(
                rgbs,
                mean=IMAGENET_DATASET_MEAN,
                std=IMAGENET_DATASET_STD,
            )

        (h, w), ratio = _shapes((H, W), self.image_shape)
        pad_left, pad_right, pad_top, pad_bottom = _paddings((h, w), self.image_shape)
        rgbs, gt_intrinsics = _preprocess(
            rgbs,
            intrinsics,
            (h, w),
            (pad_left, pad_right, pad_top, pad_bottom),
            ratio,
            self.image_shape,
        )

        # run encoder
        encoder_outputs, cls_tokens = self.pixel_encoder(rgbs)
        if "dino" in self.pixel_encoder.__class__.__name__.lower():
            encoder_outputs = [
                (x + y.unsqueeze(1)).contiguous()
                for x, y in zip(encoder_outputs, cls_tokens)
            ]

        # get data for decoder and adapt to given camera
        inputs = {}
        inputs["encoder_outputs"] = encoder_outputs
        inputs["cls_tokens"] = cls_tokens
        inputs["image"] = rgbs
        if gt_intrinsics is not None:
            rays, angles = generate_rays(
                gt_intrinsics, self.image_shape, noisy=self.training
            )
            inputs["rays"] = rays
            inputs["angles"] = angles
            inputs["K"] = gt_intrinsics
            self.pixel_decoder.test_fixed_camera = True
            self.pixel_decoder.skip_camera = skip_camera

        # decode all
        pred_intrinsics, predictions, _ = self.pixel_decoder(inputs, {})

        # undo the reshaping and get original image size (slow)
        predictions, pred_intrinsics = _postprocess(
            predictions,
            pred_intrinsics,
            self.image_shape,
            (pad_left, pad_right, pad_top, pad_bottom),
            ratio,
            (H, W),
        )

        # final 3D points backprojection
        intrinsics = gt_intrinsics if gt_intrinsics is not None else pred_intrinsics
        angles = generate_rays(intrinsics, (H, W), noisy=False)[-1]
        angles = rearrange(angles, "b (h w) c -> b c h w", h=H, w=W)
        points_3d = torch.cat((angles, predictions), dim=1)
        points_3d = spherical_zbuffer_to_euclidean(
            points_3d.permute(0, 2, 3, 1)
        ).permute(0, 3, 1, 2)

        # output data
        outputs = {
            "intrinsics": pred_intrinsics,
            "points": points_3d,
            "depth": predictions[:, -1:],
        }
        self.pixel_decoder.test_fixed_camera = False
        self.pixel_decoder.skip_camera = False
        return outputs

    def load_pretrained(self, model_file):
        device = (
            torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        )
        dict_model = torch.load(model_file, map_location=device)

        if "model" in dict_model:
            dict_model = dict_model["model"]
        new_state_dict = deepcopy(
            {k.replace("module.", ""): v for k, v in dict_model.items()}
        )

        info = self.load_state_dict(new_state_dict, strict=False)
        if is_main_process():
            print(
                f"Loaded from {model_file} for {self.__class__.__name__} results in:",
                info,
            )

    def get_params(self, config):
        if hasattr(self.pixel_encoder, "get_params"):
            encoder_p, encoder_lr = self.pixel_encoder.get_params(
                config["model"]["pixel_encoder"]["lr"],
                config["training"]["wd"],
                config["training"]["ld"],
            )
        else:
            encoder_p, encoder_lr = get_params(
                self.pixel_encoder,
                config["model"]["pixel_encoder"]["lr"],
                config["training"]["wd"],
            )
        decoder_p, decoder_lr = get_params(
            self.pixel_decoder, config["training"]["lr"], config["training"]["wd"]
        )
        return [*encoder_p, *decoder_p], [*encoder_lr, *decoder_lr]

    @property
    def device(self):
        return next(self.parameters()).device

    def build(self, config):
        mod = importlib.import_module("unidepth.models.encoder")
        pixel_encoder_factory = getattr(mod, config["model"]["pixel_encoder"]["name"])
        pixel_encoder_config = {
            **config["training"],
            **config["data"],
            **config["model"]["pixel_encoder"],
            "interpolate_offset": 0.1,
        }
        pixel_encoder = pixel_encoder_factory(pixel_encoder_config)

        config["model"]["pixel_encoder"]["patch_size"] = (
            14 if "dino" in config["model"]["pixel_encoder"]["name"] else 16
        )
        pixel_encoder_embed_dims = (
            pixel_encoder.embed_dims
            if hasattr(pixel_encoder, "embed_dims")
            else [getattr(pixel_encoder, "embed_dim") * 2**i for i in range(4)]
        )
        config["model"]["pixel_encoder"]["embed_dim"] = getattr(
            pixel_encoder, "embed_dim"
        )
        config["model"]["pixel_encoder"]["embed_dims"] = pixel_encoder_embed_dims
        config["model"]["pixel_encoder"]["depths"] = pixel_encoder.depths

        self.pixel_encoder = pixel_encoder
        self.pixel_decoder = Decoder(config)
        self.image_shape = config["data"]["image_shape"]