File size: 75,218 Bytes
333dfab
3f6ab90
333dfab
 
 
 
 
 
3f6ab90
 
 
333dfab
 
 
 
3f6ab90
333dfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6ab90
333dfab
 
 
 
 
 
 
3f6ab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333dfab
3f6ab90
333dfab
3f6ab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333dfab
 
 
3f6ab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333dfab
3f6ab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333dfab
 
3f6ab90
333dfab
 
 
3f6ab90
 
 
 
333dfab
3f6ab90
 
 
333dfab
3f6ab90
333dfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6ab90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333dfab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
import streamlit as st
fuel_values = ["Coal", "Natural Gas", "Oil", "Renewable Energy", "Other"]
purchased_goods_values = ["Cement", "Plaster", "Paint", "Timber", "Concrete"]
supplier_values = ["Supplier C", "Supplier D", "Supplier E", "Supplier F", "Supplier G"]
scope_values = ["Electricity", "Natural Gas"]
material_inputs_values = ["Cotton", "Polymer", "Chemical A", "Chemical B"]
transport_values = ["Cotton", "Polymer", "Chemical A", "Chemical B"]
waste_output_values = ["Waste sent to landfill"]
categories = ["Category 1", "Category 2", "Category 3", "Category 4", "Category 5",
              "Category 6", "Category 7", "Category 8", "Category 9", "Category 10",
              "Category 11", "Category 12", "Category 13", "Category 14", "Category 15"]

def calculate_emissions_supplier_specific(purchased_goods_data):
    total_emissions = sum([qty * emission_factor for _, _, qty, emission_factor in purchased_goods_data])
    st.header(f"Total Emissions for Supplier-specific Method: {total_emissions} kg CO2e")
    

def calculate_emissions_hybrid(scope1_and_scope2_data, material_inputs_data, transport_data, waste_output_data):
    scope1_and_scope2_emissions = sum([float(item['Amount (kWh)']) * float(item['Emission factor (kg CO2e/kWh)']) for item in scope1_and_scope2_data])
    waste_output_emissions = sum([float(item['Amount (kg)']) * float(item['Emission factor (kg CO2e/kg of waste sent to landfill)']) for item in waste_output_data])
    other_upstream_emissions = sum([float(item['Mass purchased (kg)']) * float(item['Emission factor (kg CO2e/kg)']) for item in material_inputs_data])
    total_emissions = scope1_and_scope2_emissions + waste_output_emissions + other_upstream_emissions

    transport_emissions_per_item = [
        float(item['Distance of transport (km)']) * float(item1['Mass purchased (kg)']) * float(item['Vehicle type emission factor (kg CO2e/kg/km)'])
        for item in transport_data for item1 in material_inputs_data if item["Purchased Goods"] == item1["Purchased Goods"]
    ]

    for i, item in enumerate(transport_data):
        st.header(f"Emissions for Purchased Item {i + 1}: {transport_emissions_per_item[i]} kg CO2e")

    

def calculate_emissions_hybrid_pro(tshirt_data, scope_data, waste_output_data):
    scope1_and_scope2_emissions = sum([float(item['Amount (kWh)']) * float(item['Emission factor (kg CO2e/kWh)']) for item in scope_data])
    waste_output_emissions = sum([float(item['Amount (kg)']) * float(item['Emission factor (kg CO2e/kg of waste sent to landfill)']) for item in waste_output_data])
    other_upstream_emissions = sum([float(item['Number of t-shirts purchased']) * float(item['Cradle-to-gate process emission factor (kg CO2e/per t-shirt(excluding scopes)']) for item in tshirt_data])
    total_emissions = scope1_and_scope2_emissions + waste_output_emissions + other_upstream_emissions
    st.header(f"Total Emissions for HybridPro Method: {total_emissions} kg CO2e")
    

def collect_category_3_data():
    st.header("Category 3: Fuel and Energy related activities not included in scope 1 and Scope 2")

    method_options = ["Method 1: Upstream emissions of purchased fuels",
                      "Method 2: Upstream emissions of purchased electricity",
                      "Method 3: Transmission and distribution losses",
                      "Method 4: Emissions from power that is purchased and sold"]
    selected_method = st.selectbox("Select Method", method_options)

    if selected_method == "Method 1: Upstream emissions of purchased fuels":
        fuel_data = dynamic_input_fields("Fuel Data", ["Fuel consumed (kWh)", "Upstream fuel emission factor (kg CO2e/kWh)"], ["Fuel consumed (kWh)", "Upstream fuel emission factor (kg CO2e/kWh)"])
        calculate_emissions_category_3_method_1(fuel_data)

    elif selected_method == "Method 2: Upstream emissions of purchased electricity":
        selected_country = st.selectbox("Select country", ["Australia", "Canada", "India", "US", "Turkey"])
        electricity_data = dynamic_input_fields("Electricity Data", ["Electricity"], ["Electricity"], country=selected_country)
        steam_data = dynamic_input_fields("Steam Data", ["Steam"], ["Steam"], country=selected_country)
        heating_data = dynamic_input_fields("Heating Data", ["Heating"], ["Heating"], country=selected_country)
        cooling_data = dynamic_input_fields("Cooling Data", ["Cooling"], ["Cooling"], country=selected_country)
        upstream_emission_factors = dynamic_input_fields("Upstream Emission Factors", ["Electricity", "Steam", "Heating", "Cooling"], ["Electricity", "Steam", "Heating", "Cooling"], country=selected_country)
        calculate_emissions_category_3_method_2(electricity_data, steam_data, heating_data, cooling_data, upstream_emission_factors,selected_country)

    elif selected_method == "Method 3: Transmission and distribution losses":
        selected_country = st.selectbox("Select country", ["Australia", "Canada", "India", "US", "Turkey"])
        electricity_data = dynamic_input_fields("Electricity Data", ["Electricity"], ["Electricity"], country=selected_country)
        steam_data = dynamic_input_fields("Steam Data", ["Steam"], ["Steam"], country=selected_country)
        heating_data = dynamic_input_fields("Heating Data", ["Heating"], ["Heating"], country=selected_country)
        cooling_data = dynamic_input_fields("Cooling Data", ["Cooling"], ["Cooling"], country=selected_country)
        t_and_d_loss_data = dynamic_input_fields("T&D Loss Data", ["Transmission"], ["Transmission"], country=selected_country)
        upstream_emission_factors = dynamic_input_fields("Upstream Emission Factors", ["Electricity", "Steam", "Heating", "Cooling"], ["Electricity", "Steam", "Heating", "Cooling"], country=selected_country)
        calculate_emissions_category_3_method_3(electricity_data,steam_data,heating_data,cooling_data,upstream_emission_factors, t_and_d_loss_data,selected_country)   
    
    elif selected_method == "Method 4: Emissions from power that is purchased and sold":
        selected_country = st.selectbox("Select country", ["Australia", "Canada", "India", "US", "Turkey"])
        electricity_data = dynamic_input_fields("Electricity Data", ["Electricity"], ["Electricity"],country=selected_country)
        steam_data = dynamic_input_fields("Steam Data", ["Steam"], ["Steam"],country=selected_country)
        heating_data = dynamic_input_fields("Heating Data", ["Heating"], ["Heating"],country=selected_country)
        cooling_data = dynamic_input_fields("Cooling Data", ["Cooling"], ["Cooling"],country=selected_country)
        upstream_emission_factors = dynamic_input_fields("Upstream Emission Factors", ["Electricity", "Steam", "Heating", "Cooling"], ["Country", "Electricity", "Steam", "Heating", "Cooling"], country=selected_country)
        calculate_emissions_category_3_method_4(electricity_data,steam_data,heating_data,cooling_data,upstream_emission_factors,selected_country) 

def calculate_emissions_category_3_method_1(fuel_data):
    total_emissions = sum(
        [
            item["Fuel consumed (kWh)"] * (item["Upstream fuel emission factor (kg CO2e/kWh)"])
            for item in fuel_data
        ]
    )
    st.header(f"Total Emissions for Upstream emissions of purchased fuels is {total_emissions} kg CO2e")

def calculate_emissions_category_3_method_2(electricity_data, steam_data, heating_data, cooling_data, upstream_emission_factor,selected_country):
    country_electricity = next(item for item in electricity_data if item["Country"] == selected_country)["Electricity"]
    country_steam = next(item for item in steam_data if item["Country"] == selected_country)["Steam"]
    country_heating = next(item for item in heating_data if item["Country"] == selected_country)["Heating"]
    country_cooling = next(item for item in cooling_data if item["Country"] == selected_country)["Cooling"]
    country_factors = next(item for item in upstream_emission_factor if item["Country"] == selected_country)

    total_emissions = (
        country_electricity * country_factors["Electricity"]
        + country_steam * country_factors["Steam"]
        + country_heating * country_factors["Heating"]
        + country_cooling * country_factors["Cooling"]
    )

    st.header(f"Total Emissions for Upstream emissions of purchased electricity: {total_emissions} kg CO2e")

def calculate_emissions_category_3_method_3(electricity_data, steam_data, heating_data, cooling_data, upstream_emission_factors,t_and_d_loss, selected_country):
    country_electricity = next(item for item in electricity_data if item["Country"] == selected_country)["Electricity"]
    country_steam = next(item for item in steam_data if item["Country"] == selected_country)["Steam"]
    country_heating = next(item for item in heating_data if item["Country"] == selected_country)["Heating"]
    country_cooling = next(item for item in cooling_data if item["Country"] == selected_country)["Cooling"]
    country_factors = next(item for item in upstream_emission_factors if item["Country"] == selected_country)
    country_td = next(item for item in t_and_d_loss if item["Country"] == selected_country)
    st.header(country_factors)
    total_emissions = (
        country_electricity * country_factors["Electricity"] * country_td["Transmission"]
        + country_steam * country_factors["Steam"] * country_td["Transmission"]
        + country_heating * country_factors["Heating"] * country_td["Transmission"]
        + country_cooling * country_factors["Cooling"] * country_td["Transmission"]
    )

    st.header(f"Total Emissions for Transmission and distribution losses: {total_emissions} kg CO2e")

def calculate_emissions_category_3_method_4(electricity_data, steam_data, heating_data, cooling_data, emission_factors, selected_country):
    country_factors = next((item for item in emission_factors if item["Country"] == selected_country), None)
    st.header(country_factors)
    if country_factors is not None:
        total_emissions = (
            sum(item["Electricity"] * country_factors["Electricity"] for item in electricity_data)
            + sum(item["Steam"] * country_factors["Steam"] for item in steam_data)
            + sum(item["Heating"] * country_factors["Heating"] for item in heating_data)
            + sum(item["Cooling"] * country_factors["Cooling"] for item in cooling_data)
        )

        st.header(f"Total Emissions where power is purchased and sold: {total_emissions} kg CO2e")
    else:
        st.warning(f"No emission factors found for {selected_country} in emission_factors.")


def calculate_emissions_category_4_method_1(fuel_data, electricity_data, refrigerant_data, total_fuel_spend=None, total_distance_travelled=None):
    fuel_emissions = sum([item["Fuel consumed (liters)"] * item["Emission factor (kg CO2e/liter)"] for item in fuel_data])
    electricity_emissions = sum([item["Quantity of electricity consumed (kWh)"] * item["Emission factor for electricity grid (kg CO2e/kWh)"] for item in electricity_data])
    refrigerant_emissions = sum([item["Refrigerant leakage (kg)"] * item["Global warming potential for refrigerant (kg CO2e)"] for item in refrigerant_data])

    if total_fuel_spend:
        quantities_of_fuel = sum([item["Total fuel spend ($)"] / item["Average fuel price ($/liter)"] for item in fuel_data])
        fuel_emissions_from_spending = quantities_of_fuel * sum([item["Average fuel price ($/liter)"] * item["Emission factor (kg CO2e/liter)"] for item in fuel_data])
        total_emissions = fuel_emissions + electricity_emissions + refrigerant_emissions + fuel_emissions_from_spending
    elif total_distance_travelled:
        quantities_of_fuel_consumed = sum([item["Total distance travelled (km)"] * item["Fuel efficiency of vehicle (liters/km)"] for item in fuel_data])
        fuel_emissions_from_distance = quantities_of_fuel_consumed * sum([item["Emission factor for the fuel (kg CO2e/liter)"] for item in fuel_data])
        total_emissions = fuel_emissions + electricity_emissions + refrigerant_emissions + fuel_emissions_from_distance
    else:
        total_emissions = fuel_emissions + electricity_emissions + refrigerant_emissions

    st.header(f"Total Emissions for Fuel-based Method: {total_emissions} kg CO2e")


def calculate_emissions_category_4_method_2(fuel_data, average_efficiency_unladen, total_distance_travelled_unladen):
    total_emissions_unladen = sum([item["Quantity of fuel consumed from backhaul"] * item["Emission factor for the fuel (kg CO2e/liter)"] for item in fuel_data])
    total_emissions_unladen += sum([average_efficiency_unladen * total_distance_travelled_unladen * item["Emission factor for the fuel (kg CO2e/liter)"] for item in fuel_data])

    st.header(f"Total Emissions for Unladen Backhaul: {total_emissions_unladen} kg CO2e")


def calculate_emissions_category_4_method_3(transport_data):
    total_emissions_transport = sum([
        item["Mass of goods purchased (tonnes)"] * item["Distance travelled in transport leg (km)"] * item["Emission factor of transport mode or vehicle type (kg CO2e/tonne-km)"]
        for item in transport_data
    ])

    st.header(f"Total Emissions for Transportation: {total_emissions_transport} kg CO2e")


def calculate_emissions_category_4_method_4(storage_data):
    total_emissions_distribution = sum([
        (
            item["Fuel consumed (kWh)"] * item["Fuel emission factor (kg CO2e/kWh)"]
            + item["Electricity consumed (kWh)"] * item["Electricity emission factor (kg CO2e/kWh)"]
            + item["Refrigerant leakage (kg)"] * item["Refrigerant emission factor (kg CO2e/kg)"]
        ) * (
            item["Volume of company A’s goods (m3)"] / item["Total volume of goods in storage facility (m3)"] if item["Total volume of goods in storage facility (m3)"] != 0 else 0
        )
        for item in storage_data
    ])

    st.header(f"Total Emissions for Distribution: {total_emissions_distribution} kg CO2e")


def calculate_emissions_category_4_method_5(storage_data):
    total_emissions_distribution = sum([
        item["Volume of stored goods (m3)"] * item["Average number of days stored (days)"] * item["Emission factor for storage facility (kg CO2e/m3/day)"]
        for item in storage_data
    ])

    st.header(f"Total Emissions for Distribution (Method 5): {total_emissions_distribution} kg CO2e")

def calculate_emissions_category_5_method_1(waste_treatment_data):
    total_emissions_category_5 = sum([
        item["Allocated scope 1 and scope 2 emissions of waste treatment company"]
        for item in waste_treatment_data
    ])

    st.header(f"Total Emissions for Category 5 (Method 1): {total_emissions_category_5} kg CO2e")

def collect_category_4_method_1_data():
    st.header("Category 4: Method 1 - Fuel-based Method")

    fuel_data = dynamic_input_fields_with_emission_factor("Fuel Data", "Enter fuel data", ["Fuel consumed (liters)", "Emission factor (kg CO2e/liter)", "Total fuel spend ($)", "Average fuel price ($/liter)","Total distance travelled (km)"],
                                                          ["Fuel consumed (liters)", "Emission factor (kg CO2e/liter)", "Total fuel spend ($)", "Average fuel price ($/liter)","Total distance travelled (km)"])
    electricity_data = dynamic_input_fields_with_emission_factor("Electricity Data", "Enter electricity data", ["Quantity of electricity consumed (kWh)", "Emission factor for electricity grid (kg CO2e/kWh)"],
                                                                 ["Quantity of electricity consumed (kWh)", "Emission factor for electricity grid (kg CO2e/kWh)"])
    refrigerant_data = dynamic_input_fields_with_emission_factor("Refrigerant Data", "Enter refrigerant data", ["Refrigerant leakage (kg)", "Global warming potential for refrigerant (kg CO2e)"],
                                                                ["Refrigerant leakage (kg)", "Global warming potential for refrigerant (kg CO2e)"])

    total_fuel_spend = st.checkbox("Calculate based on total fuel spend")
    calculate_emissions_category_4_method_1(fuel_data, electricity_data, refrigerant_data, total_fuel_spend=total_fuel_spend)

def collect_category_4_method_2_data():
    st.header("Category 4: Method 2 - Unladen Backhaul")

    fuel_data = dynamic_input_fields_with_emission_factor("Fuel Data", "Enter fuel data", ["Quantity of fuel consumed from backhaul", "Emission factor for the fuel (kg CO2e/liter)"],
                                                          ["Quantity of fuel consumed from backhaul", "Emission factor for the fuel (kg CO2e/liter)"])
    average_efficiency_unladen = st.number_input("Average efficiency unladen", min_value=0.0, step=0.01, key="average_efficiency_unladen")
    total_distance_travelled_unladen = st.number_input("Total distance travelled unladen (km)", min_value=0.0, step=0.01, key="total_distance_travelled_unladen")

    calculate_emissions_category_4_method_2(fuel_data, average_efficiency_unladen, total_distance_travelled_unladen)

def collect_category_4_method_3_data():
    st.header("Category 4: Method 3 - Transportation")

    transport_data = dynamic_input_fields_with_emission_factor("Transport Data", "Enter transport data", ["Mass of goods purchased (tonnes)", "Distance travelled in transport leg (km)", "Emission factor of transport mode or vehicle type (kg CO2e/tonne-km)"],
                                                               ["Mass of goods purchased (tonnes)", "Distance travelled in transport leg (km)", "Emission factor of transport mode or vehicle type (kg CO2e/tonne-km)"])

    calculate_emissions_category_4_method_3(transport_data)

def collect_category_4_method_4_data():
    st.header("Category 4: Method 4 - Distribution")

    storage_data = dynamic_input_fields_with_emission_factor("Storage Data", "Enter storage data", ["Fuel consumed (kWh)", "Electricity consumed (kWh)", "Refrigerant leakage (kg)",
                                                                                                 "Volume of company A’s goods (m3)", "Total volume of goods in storage facility (m3)",
                                                                                                 "Fuel emission factor (kg CO2e/kWh)", "Electricity emission factor (kg CO2e/kWh)", "Refrigerant emission factor (kg CO2e/kg)"],
                                                             ["Fuel consumed (kWh)", "Electricity consumed (kWh)", "Refrigerant leakage (kg)",
                                                              "Volume of company A’s goods (m3)", "Total volume of goods in storage facility (m3)",
                                                              "Fuel emission factor (kg CO2e/kWh)", "Electricity emission factor (kg CO2e/kWh)", "Refrigerant emission factor (kg CO2e/kg)"])

    calculate_emissions_category_4_method_4(storage_data)

def collect_category_4_method_5_data():
    st.header("Category 4: Method 5 - Distribution (Method 5)")

    storage_data = dynamic_input_fields_with_emission_factor("Storage Data", "Enter storage data", ["Volume of stored goods (m3)", "Average number of days stored (days)", "Emission factor for storage facility (kg CO2e/m3/day)"],
                                                             ["Volume of stored goods (m3)", "Average number of days stored (days)", "Emission factor for storage facility (kg CO2e/m3/day)"])

    calculate_emissions_category_4_method_5(storage_data)

def get_input_category_5_method_1():
    st.subheader("Method 1: CO2e emissions from waste generated in operations")
    waste_treatment_data = dynamic_input_fields("Waste Treatment Provider", ["Allocated emissions"], ["Allocated scope 1 and scope 2 emissions of waste treatment company"])
    calculate_emissions_category_5_method_1(waste_treatment_data)

def calculate_emissions_category_5_method_1(waste_treatment_data):
    total_emissions = sum([item["Allocated emissions"] for item in waste_treatment_data])
    st.header(f"Total Emissions for Method 1: {total_emissions} kg CO2e")


def get_input_category_5_method_2():
    st.subheader("Method 2: CO2e emissions from waste generated in operations")
    waste_type_data = dynamic_input_fields_with_emission_factor("Waste Type", "Enter waste type data",
                                                                ["Waste produced (tonnes)", "Waste treatment", "Waste type and waste treatment specific emission factor"],
                                                                ["Waste produced (tonnes)", "Waste treatment", "Waste type and waste treatment specific emission factor"])
    calculate_emissions_category_5_method_2(waste_type_data)

def calculate_emissions_category_5_method_2(waste_type_data):
    total_emissions = sum([
        item["Waste produced (tonnes)"] * item["Waste type and waste treatment specific emission factor"]
        for item in waste_type_data
    ])
    st.header(f"Total Emissions for Method 2: {total_emissions} kg CO2e")


def get_input_category_5_method_3():
    st.subheader("Method 3: Average Method - CO2e emissions from waste generated in operations")
    waste_treatment_method_data = dynamic_input_fields_with_emission_factor("Waste Treatment Method", "Enter waste treatment method data",
                                                                            ["Total mass of waste (tonnes)", "Proportion (percent)", "Emission factor (kg CO2e/tonne)"],
                                                                            ["Total mass of waste (tonnes)", "Proportion (percent)", "Emission factor (kg CO2e/tonne)"])
    calculate_emissions_category_5_method_3(waste_treatment_method_data)

def calculate_emissions_category_5_method_3(waste_treatment_method_data):
    total_emissions = sum([
        item["Total mass of waste (tonnes)"] * (item["Proportion (percent)"] / 100) * item["Emission factor (kg CO2e/tonne)"]
        for item in waste_treatment_method_data
    ])
    st.header(f"Total Emissions for Method 3: {total_emissions} kg CO2e")

def get_input_category_6_method_1():
    st.subheader("Method 1: Distance-based Method - Business Travel Emissions")
    road_travel_data = dynamic_input_fields_with_dropdown_int("Road Travel", "Select road travel data",
                                                          ["Location", "Average employees per vehicle","Number of employees in group", "Car_type", "Distance (km)", "Emission factor (kg CO2e/vehicle-km)"],
                                                          ["Location", "Average employees per vehicle", "Number of employees in group", "Car_type", "Distance (km)", "Emission factor (kg CO2e/vehicle-km)"])

    air_travel_data = dynamic_input_fields_with_dropdown_int("Air Travel", "Select air travel data",
                                                         ["Number of employees in group", "Flight type", "Distance (km)", "Emission factor (kg CO2e/passenger-km)"],
                                                         ["Number of employees in group", "Flight type", "Distance (km)", "Emission factor (kg CO2e/passenger-km)"])

    include_hotel = st.checkbox("Include Hotel Emissions (Optional)")
    hotel_data = []
    if include_hotel:
        hotel_data = dynamic_input_fields("Hotel", ["Annual number of hotel nights", "Hotel emission factor (kg CO2e/night)"],
                                          ["Annual number of hotel nights", "Hotel emission factor (kg CO2e/night)"])

    calculate_emissions_category_6_method_1(road_travel_data, air_travel_data, hotel_data)



def calculate_emissions_category_6_method_1(road_travel_data, air_travel_data, hotel_data):
    road_travel_emissions = 0
    for item in road_travel_data:
        if item["Average employees per vehicle"] != 0:
            road_travel_emissions += (item["Distance (km)"] / item["Average employees per vehicle"]) * item["Emission factor (kg CO2e/vehicle-km)"]

    air_travel_emissions = sum([
        item["Distance (km)"] * item["Emission factor (kg CO2e/passenger-km)"]
        for item in air_travel_data
    ])

    total_emissions = road_travel_emissions + air_travel_emissions

    if hotel_data:
        hotel_emissions = sum([
            item["Annual number of hotel nights"] * item["Hotel emission factor (kg CO2e/night)"]
            for item in hotel_data
        ])
        total_emissions += hotel_emissions

    st.header(f"Total Business Travel Emissions: {total_emissions} kg CO2e")

def get_input_category_7_method_1():
    st.subheader("Method 1: Distance-based Method - Employee Travel Emissions")

    employee_data = dynamic_input_fields_with_dropdown_int("Employee", "Select employee data",
                                                           ["Rail commute (times per week)", "One way distance by rail (km)",
                                                            "Rail emission factor (kg CO2e/passenger-km)",
                                                            "Car commute (times per week)", "Car emission factor (kg CO2e/vehicle-km)",
                                                            "One way distance by car (km)"],
                                                           ["Rail commute (times per week)", "One way distance by rail (km)",
                                                            "Rail emission factor (kg CO2e/passenger-km)",
                                                            "Car commute (times per week)", "Car emission factor (kg CO2e/vehicle-km)",
                                                            "One way distance by car (km)"])

    telework_data = dynamic_input_fields_with_dropdown_int("Telework", "Select telework data",
                                                           ["Quantities of energy consumed (kWh)", "Emission factor for energy source (kg CO2e/kWh)"],
                                                           ["Quantities of energy consumed (kWh)", "Emission factor for energy source (kg CO2e/kWh)"])

    calculate_emissions_category_7_method_1(employee_data, telework_data)

def calculate_emissions_category_7_method_1(employee_data, telework_data):
    total_distance_rail = sum([
        item["Rail commute (times per week)"] * 2 * 5 * item["One way distance by rail (km)"]
        for item in employee_data
    ])

    total_distance_car = sum([
        item["Car commute (times per week)"] * 2 * 5 * item["One way distance by car (km)"]
        for item in employee_data
    ])

    total_emissions = sum([
        (total_distance_rail * item["Rail emission factor (kg CO2e/passenger-km)"]) +
        (total_distance_car * item["Car emission factor (kg CO2e/vehicle-km)"])
        for item in employee_data
    ])

    if telework_data:
        total_emissions += sum([
            item["Quantities of energy consumed (kWh)"] * item["Emission factor for energy source (kg CO2e/kWh)"]
            for item in telework_data
        ])

    st.header(f"Total Employee Travel Emissions (Method 1): {total_emissions} kg CO2e")


def get_input_category_7_method_2():
    st.subheader("Method 2: Average-data Method - Employee Travel Emissions")

    commute_data = dynamic_input_fields_with_dropdown_int("Commute Group", "Select commute group data",
                                                          ["Percent of total commutes", "Average one-way distance (km)",
                                                           "Emission factor (kg CO2e/vehicle or passenger km)"],
                                                          ["Percent of total commutes", "Average one-way distance (km)",
                                                           "Emission factor (kg CO2e/vehicle or passenger km)"])

    total_employees = st.number_input("Enter the total number of employees:", min_value=1, step=1, key="total_employees")

    calculate_emissions_category_7_method_2(commute_data, total_employees)

def calculate_emissions_category_7_method_2(commute_data, total_employees):
    total_emissions = sum([
        total_employees * (item["Percent of total commutes"] / 100) * 2 * 235 * item["Average one-way distance (km)"] *
        item["Emission factor (kg CO2e/vehicle or passenger km)"]
        for item in commute_data
    ])

    st.header(f"Total Employee Travel Emissions (Method 2): {total_emissions} kg CO2e")

def get_input_category_8_method_1():
    st.subheader("Method 1: Asset-specific method - Upstream Leased Assets Emissions")
    asset_data = dynamic_input_fields("Upstream Leased Asset", ["Natural gas (kWh)", "Natural gas emission factor (kg CO2e/kWh)",
                                                               "Electricity (kWh)", "Electricity emission factor (kg CO2e/kWh)",
                                                               "Fugitive emissions", "Fugitive emission factor"],
                                      ["Natural gas (kWh)", "Natural gas emission factor (kg CO2e/kWh)",
                                       "Electricity (kWh)", "Electricity emission factor (kg CO2e/kWh)",
                                       "Fugitive emissions", "Fugitive emission factor"])

    calculate_emissions_category_8_method_1(asset_data)

def calculate_emissions_category_8_method_1(asset_data):
    total_emissions = sum([
        (
            item["Natural gas (kWh)"] * item["Natural gas emission factor (kg CO2e/kWh)"]
            + item["Electricity (kWh)"] * item["Electricity emission factor (kg CO2e/kWh)"]
            + item["Fugitive emissions"] * item["Fugitive emission factor"]
        )
        for item in asset_data
    ])

    st.header(f"Total Emissions from Upstream Leased Assets (Asset-specific Method): {total_emissions} kg CO2e")

def calculate_emissions_category_8_method_2(lessor_data, leased_asset_data):
    total_emissions = sum([
        (
            item["Fuel consumed (e.g., liter)"] * item["Emission factor for fuel source (e.g., kg CO2e/liter)"]
            + item["Refrigerant leakage (kg)"] * item["Emission factor for refrigerant (kg CO2e/kg)"]
            + item["Process emissions"]
            + item["Electricity, steam, heating, cooling consumed (e.g., kWh)"]
            * item["Emission factor for electricity, steam, heating, cooling (e.g., kg CO2e/kWh)"]
        )
        for item in lessor_data
    ])

    total_emissions_allocated = sum([
        (item["Scope 1 and Scope 2 emissions of lessor (kg CO2e)"]
         * item["Area, volume, quantity, etc., of the leased asset"]
         / item["Total area, volume, quantity, etc., of lessor assets"]) if item["Total area, volume, quantity, etc., of lessor assets"] != 0 else 0
        for item in leased_asset_data
    ])

    st.header(f"Total Emissions from Upstream Leased Assets (CO2e Emissions from Leased Assets Method): {total_emissions + total_emissions_allocated} kg CO2e")

def calculate_emissions_category_8_method_3(building_data):
    total_emissions = sum([
        item["Total floor space of building type (m2)"] * item["Average emission factor for building type (kg CO2e/m2/year)"]
        for item in building_data
    ])

    st.header(f"Total Emissions from Upstream Leased Assets (Average-data Method for Leased Buildings): {total_emissions} kg CO2e")


def calculate_emissions_category_8_method_4(asset_data):
    total_emissions = sum([
        item["Number of assets"] * item["Average emissions per asset type (kg CO2e/asset type/year)"]
        for item in asset_data
    ])

    st.header(f"Total Emissions from Upstream Leased Assets (Average-data Method for Other Leased Assets): {total_emissions} kg CO2e")


def get_input_category_8_method_2():
    st.subheader("Method 2: CO2e emissions from leased assets - Upstream Leased Assets Emissions")
    lessor_data = dynamic_input_fields("Lessor", ["Fuel consumed (e.g., liter)", "Emission factor for fuel source (e.g., kg CO2e/liter)",
                                                  "Refrigerant leakage (kg)", "Emission factor for refrigerant (kg CO2e/kg)",
                                                  "Process emissions", "Electricity, steam, heating, cooling consumed (e.g., kWh)",
                                                  "Emission factor for electricity, steam, heating, cooling (e.g., kg CO2e/kWh)"],
                                       ["Fuel consumed (e.g., liter)", "Emission factor for fuel source (e.g., kg CO2e/liter)",
                                        "Refrigerant leakage (kg)", "Emission factor for refrigerant (kg CO2e/kg)",
                                        "Process emissions", "Electricity, steam, heating, cooling consumed (e.g., kWh)",
                                        "Emission factor for electricity, steam, heating, cooling (e.g., kg CO2e/kWh)"])

    leased_asset_data = dynamic_input_fields("Leased Asset", ["Scope 1 and Scope 2 emissions of lessor (kg CO2e)",
                                                             "Area, volume, quantity, etc., of the leased asset",
                                                             "Total area, volume, quantity, etc., of lessor assets"],
                                              ["Scope 1 and Scope 2 emissions of lessor (kg CO2e)",
                                               "Area, volume, quantity, etc., of the leased asset",
                                               "Total area, volume, quantity, etc., of lessor assets"])

    calculate_emissions_category_8_method_2(lessor_data, leased_asset_data)


def get_input_category_8_method_3():
    st.subheader("Method 3: Average-data method for leased buildings - Upstream Leased Assets Emissions")
    building_data = dynamic_input_fields("Building", ["Total floor space of building type (m2)",
                                                      "Average emission factor for building type (kg CO2e/m2/year)"],
                                         ["Total floor space of building type (m2)",
                                          "Average emission factor for building type (kg CO2e/m2/year)"])

    calculate_emissions_category_8_method_3(building_data)


def get_input_category_8_method_4():
    st.subheader("Method 4: Average-data method for leased assets other than buildings - Upstream Leased Assets Emissions")
    asset_data = dynamic_input_fields("Leased Asset", ["Number of assets", "Average emissions per asset type (kg CO2e/asset type/year)"],
                                      ["Number of assets", "Average emissions per asset type (kg CO2e/asset type/year)"])

    calculate_emissions_category_8_method_4(asset_data)

def calculate_emissions_category_9_method_1(transportation_data):
    total_emissions = sum([
        item["Mass of goods sold (tonnes)"] * item["Total downstream distance transported (km)"]
        * item["Emission factor (kg CO2e/tonne-km)"]
        for item in transportation_data
    ])

    st.header(f"Total Emissions from Downstream Transportation: {total_emissions} kg CO2e")

def get_input_category_9_method_1():
    st.subheader("Method 1: Downstream Transportation Emissions")
    transportation_data = dynamic_input_fields("Transportation", ["Mass of goods sold (tonnes)",
                                                                   "Total downstream distance transported (km)",
                                                                   "Transport mode or vehicle type",
                                                                   "Emission factor (kg CO2e/tonne-km)"],
                                                ["Mass of goods sold (tonnes)",
                                                 "Total downstream distance transported (km)",
                                                 "Transport mode or vehicle type",
                                                 "Emission factor (kg CO2e/tonne-km)"])

    calculate_emissions_category_9_method_1(transportation_data)

def get_input_category_10_method_1():
    st.subheader("Method 1: Site-specific Method - Processing of Sold Intermediate Products")
    
    fuel_data = dynamic_input_fields("Fuel", ["Quantity consumed (e.g., liter)", "Life cycle emission factor (kg CO2e/liter)"],
                                     ["Quantity consumed (e.g., liter)", "Life cycle emission factor (kg CO2e/liter)"])

    electricity_data = dynamic_input_fields("Electricity", ["Quantity consumed (e.g., kWh)", "Life cycle emission factor (kg CO2e/kWh)"],
                                            ["Quantity consumed (e.g., kWh)", "Life cycle emission factor (kg CO2e/kWh)"])

    refrigerant_data = dynamic_input_fields("Refrigerant", ["Quantity of leakage (kg)", "Global Warming Potential (kg CO2e/kg)"],
                                            ["Quantity of leakage (kg)", "Global Warming Potential (kg CO2e/kg)"])

    process_emissions = st.number_input("Sum of Process Emissions (kg CO2e)", min_value=0.0, step=0.1)

    include_waste = st.checkbox("Include Waste Emissions (Optional)")
    waste_data = []
    if include_waste:
        waste_data = dynamic_input_fields("Waste", ["Mass of waste output (kg)", "Emission factor (kg CO2e/kg waste)"],
                                          ["Mass of waste output (kg)", "Emission factor (kg CO2e/kg waste)"])

    calculate_emissions_category_10_method_1(fuel_data, electricity_data, refrigerant_data, process_emissions, waste_data)

def calculate_emissions_category_10_method_1(fuel_data, electricity_data, refrigerant_data, process_emissions, waste_data):
    total_fuel_emissions = sum([
        item["Quantity consumed (e.g., liter)"] * item["Life cycle emission factor (kg CO2e/liter)"]
        for item in fuel_data
    ])

    total_electricity_emissions = sum([
        item["Quantity consumed (e.g., kWh)"] * item["Life cycle emission factor (kg CO2e/kWh)"]
        for item in electricity_data
    ])

    total_refrigerant_emissions = sum([
        item["Quantity of leakage (kg)"] * item["Global Warming Potential (kg CO2e/kg)"]
        for item in refrigerant_data
    ])

    total_waste_emissions = 0.0
    if waste_data:
        total_waste_emissions = sum([
            item["Mass of waste output (kg)"] * item["Emission factor (kg CO2e/kg waste)"]
            for item in waste_data
        ])

    total_emissions = total_fuel_emissions + total_electricity_emissions + total_refrigerant_emissions + process_emissions + total_waste_emissions
    st.header(f"Total Emissions from Processing of Sold Intermediate Products (Method 1): {total_emissions} kg CO2e")

def get_input_category_10_method_2():
    st.subheader("Method 2: Average-data Method - Processing of Sold Intermediate Products")
    
    product_data = dynamic_input_fields("Intermediate Product", ["Mass of sold intermediate product (kg)", "Emission factor of processing stages (kg CO2e/kg of final product)"],
                                        ["Mass of sold intermediate product (kg)", "Emission factor of processing stages (kg CO2e/kg of final product)"])

    calculate_emissions_category_10_method_2(product_data)

def calculate_emissions_category_10_method_2(product_data):
    total_emissions = sum([
        item["Mass of sold intermediate product (kg)"] * item["Emission factor of processing stages (kg CO2e/kg of final product)"]
        for item in product_data
    ])
    st.header(f"Total Emissions from Processing of Sold Intermediate Products (Method 2): {total_emissions} kg CO2e")

def get_input_category_11_method_1():
    st.subheader("Method 1: Direct Use-phase Emissions from Products Consuming Energy (Fuels or Electricity) during Use")
    
    product_data = dynamic_input_fields("Product", ["Total lifetime expected uses", "Number sold", 
                                                    "Fuel consumed per use (kWh)", "Emission factor for fuel (kg CO2e/kWh)"],
                                       ["Total lifetime expected uses", "Number sold", 
                                        "Fuel consumed per use (kWh)", "Emission factor for fuel (kg CO2e/kWh)"])

    include_electricity = st.checkbox("Include Electricity Emissions (Optional)")
    electricity_data = []
    if include_electricity:
        electricity_data = dynamic_input_fields("Product Electricity", ["Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"],
                                               ["Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"])

    refrigerant_data = dynamic_input_fields("Product Refrigerant", ["Refrigerant leakage per use (kg)", "Global Warming Potential (kg CO2e/kg)"],
                                            ["Refrigerant leakage per use (kg)", "Global Warming Potential (kg CO2e/kg)"])

    calculate_emissions_category_11_method_1(product_data, electricity_data, refrigerant_data)

def calculate_emissions_category_11_method_1(product_data, electricity_data, refrigerant_data):
    total_fuel_emissions = sum([
        item["Total lifetime expected uses"] * item["Number sold"] * item["Fuel consumed per use (kWh)"] * item["Emission factor for fuel (kg CO2e/kWh)"]
        for item in product_data
    ])

    total_electricity_emissions = 0.0
    if electricity_data:
        total_electricity_emissions = sum([
            item1["Total lifetime expected uses"] * item1["Number sold"] * item["Electricity consumed per use (kWh)"] * item["Emission factor for electricity (kg CO2e/kWh)"]
            for item in electricity_data for item1 in product_data
        ])

    total_refrigerant_emissions = sum([
        item1["Total lifetime expected uses"] * item1["Number sold"] * item["Refrigerant leakage per use (kg)"] * item["Global Warming Potential (kg CO2e/kg)"]
        for item in refrigerant_data for item1 in product_data
    ])

    total_emissions = total_fuel_emissions + total_electricity_emissions + total_refrigerant_emissions
    st.header(f"Total Emissions from Use of Sold Products (Method 1): {total_emissions} kg CO2e")

def get_input_category_11_method_2():
    st.subheader("Method 2: Direct Use-phase Emissions from Combusted Fuels and Feedstocks")
    
    fuel_data = dynamic_input_fields("Fuel/Feedstock", ["Total quantity sold (e.g., kWh)", "Combustion emission factor (kg CO2e/kWh)"],
                                     ["Total quantity sold (e.g., kWh)", "Combustion emission factor (kg CO2e/kWh)"])

    calculate_emissions_category_11_method_2(fuel_data)

def calculate_emissions_category_11_method_2(fuel_data):
    total_fuel_emissions = sum([
        item["Total quantity sold (e.g., kWh)"] * item["Combustion emission factor (kg CO2e/kWh)"]
        for item in fuel_data
    ])
    st.header(f"Total Emissions from Use of Sold Products (Method 2): {total_fuel_emissions} kg CO2e")

def get_input_category_11_method_3():
    st.subheader("Method 3: Direct Use-phase Emissions from Greenhouse Gases and Products Containing or Forming Greenhouse Gases")
    
    ghg_data = dynamic_input_fields("GHG/Product Group", ["GHG contained per product", "Total Number of products sold",
                                                          "% of GHG released during lifetime use of product", "GWP of the GHG"],
                                    ["GHG contained per product", "Total Number of products sold",
                                     "% of GHG released during lifetime use of product", "GWP of the GHG"])

    calculate_emissions_category_11_method_3(ghg_data)

def calculate_emissions_category_11_method_3(ghg_data):
    total_emissions = sum([
        item["GHG contained per product"] * item["Total Number of products sold"] * 
        item["% of GHG released during lifetime use of product"] * item["GWP of the GHG"]
        for item in ghg_data
    ])
    st.header(f"Total Emissions from Use of Sold Products (Method 3): {total_emissions} kg CO2e")

def get_input_category_11_method_4():
    st.subheader("Method 4: Indirect Use-phase CO2e Emissions of Products")
    
    use_scenario_data = dynamic_input_fields("Use Scenario", ["% of total lifetime uses", "Number sold",
                                                             "Fuel consumed per use (e.g., kWh)", "Emission factor for fuel (e.g., kg CO2e/kWh)"],
                                            ["% of total lifetime uses", "Number sold",
                                             "Fuel consumed per use (e.g., kWh)", "Emission factor for fuel (e.g., kg CO2e/kWh)"])

    include_electricity = st.checkbox("Include Electricity Emissions (Optional)")
    electricity_data = []
    if include_electricity:
        electricity_data = dynamic_input_fields("Use Scenario electricity", ["% of total lifetime uses", "Number sold",
                                                                "Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"],
                                               ["% of total lifetime uses", "Number sold",
                                                "Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"])

    refrigerant_data = dynamic_input_fields("Use Scenario refrigerant", ["% of total lifetime uses", "Number sold",
                                                             "Refrigerant leakage per use (kg)", "Emission factor for refrigerant (kg CO2e/kg)"],
                                            ["% of total lifetime uses", "Number sold",
                                             "Refrigerant leakage per use (kg)", "Emission factor for refrigerant (kg CO2e/kg)"])

    ghg_data = dynamic_input_fields("Use Scenario ghg data", ["% of total lifetime uses", "Number sold",
                                                     "GHG emitted indirectly (kg)", "GWP of the GHG"],
                                    ["% of total lifetime uses", "Number sold",
                                     "GHG emitted indirectly (kg)", "GWP of the GHG"])

    calculate_emissions_category_11_method_4(use_scenario_data, electricity_data, refrigerant_data, ghg_data)

def calculate_emissions_category_11_method_4(use_scenario_data, electricity_data, refrigerant_data, ghg_data):
    total_fuel_emissions = sum([
        item["% of total lifetime uses"] * item["Number sold"] * item["Fuel consumed per use (e.g., kWh)"] * item["Emission factor for fuel (e.g., kg CO2e/kWh)"]
        for item in use_scenario_data
    ])

    total_electricity_emissions = 0.0
    if electricity_data:
        total_electricity_emissions = sum([
            item["% of total lifetime uses"] * item["Number sold"] * item["Electricity consumed per use (kWh)"] * item["Emission factor for electricity (kg CO2e/kWh)"]
            for item in electricity_data
        ])

    total_refrigerant_emissions = sum([
        item["% of total lifetime uses"] * item["Number sold"] * item["Refrigerant leakage per use (kg)"] * item["Emission factor for refrigerant (kg CO2e/kg)"]
        for item in refrigerant_data
    ])

    total_ghg_emissions = sum([
        item["% of total lifetime uses"] * item["Number sold"] * item["GHG emitted indirectly (kg)"] * item["GWP of the GHG"]
        for item in ghg_data
    ])

    total_emissions = total_fuel_emissions + total_electricity_emissions + total_refrigerant_emissions + total_ghg_emissions
    st.header(f"Total Emissions from Use of Sold Products (Method 4): {total_emissions} kg CO2e")

def get_input_category_11_method_5():
    st.subheader("Method 5: Use-phase CO2e Emissions of Sold Intermediate Products")
    
    intermediate_product_data = dynamic_input_fields("Intermediate Product", ["Total intermediate products sold", 
                                                                             "Total lifetime uses of final sold product",
                                                                             "Emissions per use of sold intermediate product (kg CO2e/use)"],
                                                    ["Total intermediate products sold", 
                                                     "Total lifetime uses of final sold product",
                                                     "Emissions per use of sold intermediate product (kg CO2e/use)"])

    calculate_emissions_category_11_method_5(intermediate_product_data)

def calculate_emissions_category_11_method_5(intermediate_product_data):
    total_emissions = sum([
        item["Total intermediate products sold"] * item["Total lifetime uses of final sold product"] * 
        item["Emissions per use of sold intermediate product (kg CO2e/use)"]
        for item in intermediate_product_data
    ])
    st.header(f"Total Emissions from Use of Sold Products (Method 5): {total_emissions} kg CO2e")

def get_input_category_12_method_1():
    st.subheader("Category 12: End-of-Life Treatment of Sold Products - Method 1: Waste-type-specific method")
    
    waste_data = dynamic_input_fields("Waste Treatment Method", ["Total mass of sold products and packaging (kg)",
                                                                 "Proportion of waste produced (%)",
                                                                 "Emission factor of waste treatment method (kg CO2e/kg)"],
                                     ["Total mass of sold products and packaging (kg)",
                                      "Proportion of waste produced (%)",
                                      "Emission factor of waste treatment method (kg CO2e/kg)"])

    calculate_emissions_category_12_method_1(waste_data)

def calculate_emissions_category_12_method_1(waste_data):
    total_emissions = sum([
        item["Total mass of sold products and packaging (kg)"] * 
        (item["Proportion of waste produced (%)"] / 100) * 
        item["Emission factor of waste treatment method (kg CO2e/kg)"]
        for item in waste_data
    ])
    st.header(f"Total CO2e Emissions from End-of-Life Treatment of Sold Products (Method 1): {total_emissions} kg CO2e")

def get_input_category_13():
    st.subheader("Category 13: Downstream Leased Assets")
    
    leased_assets_data = dynamic_input_fields("Lessee", ["Scope 1 and Scope 2 emissions (kg CO2e)",
                                                        "Physical area of the leased asset (e.g., area, volume)"],
                                             ["Scope 1 and Scope 2 emissions (kg CO2e)",
                                              "Physical area of the leased asset (e.g., area, volume)"])

    calculate_emissions_category_13(leased_assets_data)

def calculate_emissions_category_13(leased_assets_data):
    total_physical_area = calculate_total_physical_area(leased_assets_data)

    total_emissions = sum([
        item["Scope 1 and Scope 2 emissions (kg CO2e)"] * 
        (item["Physical area of the leased asset (e.g., area, volume)"] / total_physical_area) if total_physical_area!=0 else 0 
        for item in leased_assets_data
    ])
    st.header(f"Total CO2e Emissions from Leased Assets (Category 13): {total_emissions} kg CO2e")

def calculate_total_physical_area(leased_assets_data):
    return sum([item["Physical area of the leased asset (e.g., area, volume)"] for item in leased_assets_data])

def get_input_category_14_method_1():
    st.subheader("Category 14: Franchises - Method 1: Franchise-specific method")
    
    franchise_data = dynamic_input_fields("Franchise", ["Scope 1 emissions (kg CO2e)", "Scope 2 emissions (kg CO2e)"],
                                         ["Scope 1 emissions (kg CO2e)", "Scope 2 emissions (kg CO2e)"])

    calculate_emissions_category_14_method_1(franchise_data)

def calculate_emissions_category_14_method_1(franchise_data):
    total_emissions = sum([
        item["Scope 1 emissions (kg CO2e)"] + item["Scope 2 emissions (kg CO2e)"]
        for item in franchise_data
    ])
    st.header(f"Total CO2e Emissions from Franchises (Method 1): {total_emissions} kg CO2e")

def get_input_category_14_method_2():
    st.subheader("Category 14: Franchises - Method 2: Allocating emissions from franchise buildings")
    
    franchise_building_data = dynamic_input_fields("Franchise Building",
                                                   ["Energy use from franchise (kWh)", "Franchise's area (m2)",
                                                    "Building's total area (m2)", "Building's occupancy rate"],
                                                   ["Energy use from franchise (kWh)", "Franchise's area (m2)",
                                                    "Building's total area (m2)", "Building's occupancy rate"])

    calculate_emissions_category_14_method_2(franchise_building_data)

def calculate_emissions_category_14_method_2(franchise_building_data):
    total_emissions = sum([
        item["Energy use from franchise (kWh)"] *
        (item["Franchise's area (m2)"] / item["Building's total area (m2)"] * item["Building's occupancy rate"]) if item["Building's total area (m2)"] * item["Building's occupancy rate"] !=0 else 0
        for item in franchise_building_data
    ])
    st.header(f"Total CO2e Emissions from Franchises (Method 2): {total_emissions} kg CO2e")

def get_input_category_14_method_3():
    st.subheader("Category 14: Franchises - Method 3: Extrapolating emissions from sample groups")
    
    franchise_groups_data = dynamic_input_fields("Franchise Group", ["Total emissions from sampled franchises within group",
                                                                     "Total number of franchises within group",
                                                                     "Number of franchises sampled within group"],
                                                  ["Total emissions from sampled franchises within group",
                                                   "Total number of franchises within group",
                                                   "Number of franchises sampled within group"])

    calculate_emissions_category_14_method_3(franchise_groups_data)

def calculate_emissions_category_14_method_3(franchise_groups_data):
    total_emissions = sum([
        (item["Total emissions from sampled franchises within group"] / item["Total number of franchises within group"]) *
        item["Number of franchises sampled within group"] if item["Total number of franchises within group"]!=0 else 0
        for item in franchise_groups_data
    ])
    st.header(f"Total CO2e Emissions from Franchises (Method 3): {total_emissions} kg CO2e")

def get_input_category_14_method_4():
    st.subheader("Category 14: Franchises - Method 4: Average data method for leased buildings (if floor space data is available)")
    
    building_types_data = dynamic_input_fields("Building Type", ["Total floor space of building type (m2)",
                                                                "Average emission factor for building type (kg CO2e/m2/year)"],
                                              ["Total floor space of building type (m2)",
                                               "Average emission factor for building type (kg CO2e/m2/year)"])

    calculate_emissions_category_14_method_4(building_types_data)

def calculate_emissions_category_14_method_4(building_types_data):
    total_emissions = sum([
        item["Total floor space of building type (m2)"] * item["Average emission factor for building type (kg CO2e/m2/year)"]
        for item in building_types_data
    ])
    st.header(f"Total CO2e Emissions from Franchises (Method 4): {total_emissions} kg CO2e")

def get_input_category_14_method_5():
    st.subheader("Category 14: Franchises - Method 5: Average data method for other asset types or for leased buildings where floor space data is not available")
    
    building_asset_types_data = dynamic_input_fields("Building/Asset Type", ["Number of buildings or assets",
                                                                             "Average emissions per building or asset type per year (kg CO2e/building or asset type/year)"],
                                                    ["Number of buildings or assets",
                                                     "Average emissions per building or asset type per year (kg CO2e/building or asset type/year)"])

    calculate_emissions_category_14_method_5(building_asset_types_data)

def calculate_emissions_category_14_method_5(building_asset_types_data):
    total_emissions = sum([
        item["Number of buildings or assets"] * item["Average emissions per building or asset type per year (kg CO2e/building or asset type/year)"]
        for item in building_asset_types_data
    ])
    st.header(f"Total CO2e Emissions from Franchises (Method 5): {total_emissions} kg CO2e")

def get_input_category_15_method_1():
    st.subheader("Category 15: Investments - Method 1: Investment-specific method for equity investments")
    
    equity_investment_data = dynamic_input_fields("Equity Investment",
                                                 ["Scope 1 and scope 2 emissions of investee company (tonnes CO2e)",
                                                  "Reporting company’s share of equity (%)"],
                                                 ["Scope 1 and scope 2 emissions of investee company (tonnes CO2e)",
                                                  "Reporting company’s share of equity (%)"])

    calculate_emissions_category_15_method_1(equity_investment_data)

def calculate_emissions_category_15_method_1(equity_investment_data):
    total_emissions = sum([
        item["Scope 1 and scope 2 emissions of investee company (tonnes CO2e)"] *
        (item["Reporting company’s share of equity (%)"] / 100)
        for item in equity_investment_data
    ])
    st.header(f"Total CO2e Emissions from Investments (Method 1): {total_emissions} tonnes CO2e")

def get_input_category_15_method_2():
    st.subheader("Category 15: Investments - Method 2: Average data method for equity investments")
    
    equity_investment_average_data = dynamic_input_fields("Equity Investment Average Data",
                                                          ["Investee company total revenue ($)",
                                                           "Emission factor for investee’s sector (kg CO2e/$ revenue)",
                                                           "Reporting company’s share of equity (%)"],
                                                          ["Investee company total revenue ($)",
                                                           "Emission factor for investee’s sector (kg CO2e/$ revenue)",
                                                           "Reporting company’s share of equity (%)"])

    calculate_emissions_category_15_method_2(equity_investment_average_data)

def calculate_emissions_category_15_method_2(equity_investment_average_data):
    total_emissions = sum([
        (item["Investee company total revenue ($)"] * item["Emission factor for investee’s sector (kg CO2e/$ revenue)"]) *
        (item["Reporting company’s share of equity (%)"] / 100)
        for item in equity_investment_average_data
    ])
    st.header(f"Total CO2e Emissions from Investments (Method 2): {total_emissions} tonnes CO2e")

def get_input_category_15_method_3():
    st.subheader("Category 15: Investments - Method 3: Project-specific method for project finance and debt investments")
    
    project_finance_data = dynamic_input_fields("Project Finance",
                                                ["Scope 1 and scope 2 emissions of relevant project (tonnes CO2e)",
                                                 "Value of debt investment ($)", "Total project costs (total equity plus debt) ($)",
                                                 "Share of total project costs (%)"],
                                                ["Scope 1 and scope 2 emissions of relevant project (tonnes CO2e)",
                                                 "Value of debt investment ($)", "Total project costs (total equity plus debt) ($)",
                                                 "Share of total project costs (%)"])

    calculate_emissions_category_15_method_3(project_finance_data)

def calculate_emissions_category_15_method_3(project_finance_data):
    total_emissions = sum([
        item["Scope 1 and scope 2 emissions of relevant project (tonnes CO2e)"] *
        (item["Share of total project costs (%)"] / 100)
        for item in project_finance_data
    ])
    st.header(f"Total CO2e Emissions from Investments (Method 3): {total_emissions} tonnes CO2e")

def get_input_category_15_method_4():
    st.subheader("Category 15: Investments - Method 4: Average-data method for project finance and debt investments")
    
    project_finance_average_data = dynamic_input_fields("Project Finance Average Data",
                                                        ["Project construction cost or project revenue in reporting year ($ million)",
                                                         "Emission factor of relevant construction or operating sector (kg CO2e/$ revenue)",
                                                         "Share of total project costs (value of debt investment / total equity plus debt) (%)"],
                                                        ["Project construction cost or project revenue in reporting year ($ million)",
                                                         "Emission factor of relevant construction or operating sector (kg CO2e/$ revenue)",
                                                         "Share of total project costs (value of debt investment / total equity plus debt) (%)"])

    calculate_emissions_category_15_method_4(project_finance_average_data)

def calculate_emissions_category_15_method_4(project_finance_average_data):
    total_emissions = sum([
        ((item["Project construction cost or project revenue in reporting year ($ million)"] *
          item["Emission factor of relevant construction or operating sector (kg CO2e/$ revenue)"]) *
         item["Share of total project costs (value of debt investment / total equity plus debt) (%)"] / 100)
        for item in project_finance_average_data
    ])
    st.header(f"Total CO2e Emissions from Investments (Method 4): {total_emissions} tonnes CO2e")

def main():
    st.title("CO2 Emission Calculator")
    selected_category = st.selectbox("Select Category", categories)

    if selected_category in ["Category 1", "Category 2"]:
        method_options = ["Supplier Specific Method", "Hybrid Method", "HybridPro Method"]
        method = st.selectbox("Select Method", method_options)

        if method == "Supplier Specific Method":
            st.header("Supplier Specific Method")
            num_items = st.number_input("Number of items", min_value=1, step=1)
            purchased_goods_data = []
            for i in range(num_items):
                goods = st.selectbox(f"Purchased Goods {i + 1}", purchased_goods_values, key=f"goods_{i}")
                supplier = st.selectbox(f"Supplier {i + 1}", supplier_values, key=f"supplier_{i}")
                qty = st.number_input(f"Qty Purchased (kg) {i + 1}", min_value=0.0, step=0.01, key=f"qty_{i}")
                emission_factor = st.number_input(f"Supplier-specific Emission Factor (kg CO2e/kg) {i + 1}", min_value=0.0, step=0.01, key=f"emission_factor_{i}")
                purchased_goods_data.append((goods, supplier, qty, emission_factor))
            calculate_emissions_supplier_specific(purchased_goods_data)

        elif method == "Hybrid Method":
            st.header("Hybrid Method")
            scope1_and_scope2_data = dynamic_input_fields_with_dropdown("Scope 1 and Scope 2 data from supplier B relating to production of purchased goods", "Enter scope 1 and scope 2 data", scope_values, ["Category","Amount (kWh)", "Emission factor (kg CO2e/kWh)"])
            material_inputs_data = dynamic_input_fields_with_dropdown("Material inputs of purchased goods", "Enter material input data", material_inputs_values, ["Purchased Goods", "Mass purchased (kg)", "Emission factor (kg CO2e/kg)"])
            transport_data = dynamic_input_fields_with_dropdown("Transport of material inputs to supplier B", "Enter transport data", transport_values, ["Purchased Goods", "Distance of transport (km)", "Vehicle type emission factor (kg CO2e/kg/km)"])
            waste_output_data = dynamic_input_fields_with_emission_factor("Waste outputs by supplier B relating to production of purchased goods", "Enter waste output data", waste_output_values, ["Amount (kg)", "Emission factor (kg CO2e/kg of waste sent to landfill)"])
            calculate_emissions_hybrid(scope1_and_scope2_data, material_inputs_data, transport_data, waste_output_data)

        elif method == "HybridPro Method":
            scope_data = dynamic_input_fields_with_dropdown("Scope 1 and Scope 2 data from supplier B", "Enter scope data", scope_values, ["Category","Amount (kWh)", "Emission factor (kg CO2e/kWh)"])
            tshirt_data = dynamic_input_fields_with_emission_factor("T-shirts", "Enter T-shirt data", purchased_goods_values,
                                                                    ["Number of t-shirts purchased",
                                                                    "Cradle-to-gate process emission factor (kg CO2e/per t-shirt)","Cradle-to-gate process emission factor (kg CO2e/per t-shirt(excluding scopes)"])
            waste_output_data = dynamic_input_fields_with_emission_factor("Waste outputs by supplier B", "Enter waste output data", waste_output_values,
                                                                        ["Amount (kg)", "Emission factor (kg CO2e/kg of waste sent to landfill)"])
            calculate_emissions_hybrid_pro(tshirt_data, scope_data, waste_output_data)
        
    elif selected_category=="Category 3":
        collect_category_3_data()
    
    elif selected_category == "Category 4":
        method_options = ["Method 1: Fuel-based Method", "Method 2: Unladen Backhaul", "Method 3: Transportation", "Method 4: Distribution", "Method 5: Distribution"]
        selected_method = st.selectbox("Select Method for Category 4", method_options)

        if selected_method == "Method 1: Fuel-based Method":
            collect_category_4_method_1_data()
        elif selected_method == "Method 2: Unladen Backhaul":
            collect_category_4_method_2_data()
        elif selected_method == "Method 3: Transportation":
            collect_category_4_method_3_data()
        elif selected_method == "Method 4: Distribution":
            collect_category_4_method_4_data()
        elif selected_method == "Method 5: Distribution":
            collect_category_4_method_5_data()

    elif selected_category == "Category 5":
        method_options = ["Method 1: Waste Operations using scope", "Method 2: Waste operations using produce", "Method 3: Average Method"]
        selected_method = st.selectbox("Select Method for Category 5", method_options)

        if selected_method == "Method 1: Waste Operations using scope":
            get_input_category_5_method_1()
        elif selected_method == "Method 2: Waste operations using produce":
            get_input_category_5_method_2()
        elif selected_method == "Method 3: Average Method":
            get_input_category_5_method_3()

    elif selected_category == "Category 6":
        get_input_category_6_method_1()
    
    elif selected_category == "Category 7":
        method_options = ["Method 1: Standard method", "Method 2: Average Method"]
        selected_method = st.selectbox("Select Method for Category 7", method_options)
        if selected_method == "Method 1: Standard method":
            get_input_category_7_method_1()
        elif selected_method == "Method 2: Average Method":
            get_input_category_7_method_2()

    elif selected_category == "Category 8":
        method_options = ["Method 1: Asset specific", "Method 2: Leased assets", "Method 3: Average method for leased assets","Method 4: Average method for leased buildings"]
        selected_method = st.selectbox("Select Method for Category 8", method_options)

        if selected_method == "Method 1: Asset specific":
            get_input_category_8_method_1()
        elif selected_method == "Method 2: Leased assets":
            get_input_category_8_method_2()
        elif selected_method == "Method 3: Average method for leased assets":
            get_input_category_8_method_3()
        elif selected_method == "Method 4: Average method for leased buildings":
            get_input_category_8_method_4()
 
    elif selected_category == "Category 9":
        get_input_category_9_method_1()

    elif selected_category == "Category 10":
        method_options = ["Method 1: Site-specific", "Method 2: Average specific"]
        selected_method = st.selectbox("Select Method for Category 10", method_options)

        if selected_method == "Method 1: Site-specific":
            get_input_category_10_method_1()
        elif selected_method == "Method 2: Average specific":
            get_input_category_10_method_2()

    elif selected_category == "Category 11":
        method_options = ["Method 1: Direct energy consumption", "Method 2: Combusted Fuels", "Method 3: Greenhouse gases","Method 4: Indirect use","Method 5: Sold-intermediate products"]
        selected_method = st.selectbox("Select Method for Category 11", method_options)

        if selected_method == "Method 1: Direct energy consumption":
            get_input_category_11_method_1()
        elif selected_method == "Method 2: Combusted Fuels":
            get_input_category_11_method_2()
        elif selected_method == "Method 3: Greenhouse gases":
            get_input_category_11_method_3()
        elif selected_method == "Method 4: Indirect use":
            get_input_category_11_method_4()
        else:
            get_input_category_11_method_5()

    elif selected_category == "Category 12":
        get_input_category_12_method_1()

    elif selected_category == "Category 13":
        get_input_category_13()

    elif selected_category == "Category 14":
        method_options = ["Method 1: Franchise-specific", "Method 2: Allocating emissions from franchise buildings that are not sub-metered", "Method 3: Extrapolating emissions from sample groups","Method 4: Average data method for leased buildings (if floor space data is available)","Method 5: Average data method for other asset types or for leased buildings where floor space data is not available"]
        selected_method = st.selectbox("Select Method for Category 14", method_options)

        if selected_method == "Method 1: Franchise-specific":
            get_input_category_14_method_1()
        elif selected_method == "Method 2: Allocating emissions from franchise buildings that are not sub-metered":
            get_input_category_14_method_2()
        elif selected_method == "Method 3: Extrapolating emissions from sample groups":
            get_input_category_14_method_3()
        elif selected_method == "Method 4: Average data method for leased buildings (if floor space data is available)":
            get_input_category_14_method_4()
        else:
            get_input_category_14_method_5()

    else:
        method_options = ["Method 1: Investment-specific method for calculating emissions from equity investments", "Method 2: Average data method ", "Method 3: Project-specific method for calculating emissions from project finance and debt investments with known use of proceeds","Method 4: Average-data method for calculating emissions from project finance and debt investments with known use of proceeds"]
        selected_method = st.selectbox("Select Method for Category 14", method_options)

        if selected_method == "Method 1: Investment-specific method for calculating emissions from equity investments":
            get_input_category_15_method_1()
        elif selected_method == "Method 2: Average data method ":
            get_input_category_15_method_2()
        elif selected_method == "Method 3: Project-specific method for calculating emissions from project finance and debt investments with known use of proceeds":
            get_input_category_15_method_3()
        elif selected_method == "Method 4: Average-data method for calculating emissions from project finance and debt investments with known use of proceeds":
            get_input_category_15_method_4()

def dynamic_input_fields(label, values, headings, country=None):
    num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
    input_fields = []

    for i in range(num_items):
        st.subheader(f"{label} {i + 1}")
        input_data = {}
        
        if country:
            input_data["Country"] = country

        for value, heading in zip(values, headings):
            key = f"{label}_{i}_{value}_{heading}"
            input_data[value] = st.number_input(f"{heading} {i + 1}", min_value=0.0, step=0.01, key=key)

        input_fields.append(input_data)

    return input_fields

def dynamic_input_fields_with_dropdown(label, prompt, values, headings):
    num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
    input_fields = []
    for i in range(num_items):
        st.subheader(f"{label} {i + 1}")
        input_data = {}
        input_data[headings[0]] = st.selectbox(f"{headings[0]} {i + 1}", values, key=f"{label}_{i}_{headings[0]}")
        for heading in headings[1:]:
            input_data[heading] = st.number_input(f"{heading} {i + 1}", min_value=0.0, step=0.01, key=f"{label}_{i}_{heading}")
        input_fields.append(input_data)
    return input_fields

def dynamic_input_fields_with_emission_factor(label, prompt, values, headings):
    num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
    input_fields = []
    for i in range(num_items):
        st.subheader(f"{label} {i + 1}")
        input_data = {}
        for heading in headings:
            input_data[heading] = st.number_input(f"{heading} {i + 1}", min_value=0.0, step=0.01, key=f"{label}_{i}_{heading}")
        input_fields.append(input_data)
    return input_fields

def dynamic_input_fields_with_dropdown_int(label, prompt, values, headings):
    num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
    input_fields = []

    dropdown_options = {
        "Location": ["US", "Aus"],
        "Car_type": ["Hybrid", "Gasoline", "4 wheel"],

    }

    for i in range(num_items):
        st.subheader(f"{label} {i + 1}")
        input_data = {}

        for j, heading in enumerate(headings):
            if heading in dropdown_options:
                input_data[heading] = st.selectbox(f"{heading} {i + 1}", dropdown_options[heading], key=f"{label}_{i}_{heading}")
            else:
                input_data[heading] = st.number_input(f"{heading} {i + 1}", min_value=0, step=1, key=f"{label}_{i}_{heading}")

        input_fields.append(input_data)

    return input_fields



if __name__ == "__main__":
    main()