Spaces:
Sleeping
Sleeping
Added 15 categories
Browse files
app.py
CHANGED
@@ -1,16 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
purchased_goods_values = ["Cement", "Plaster", "Paint", "Timber", "Concrete"]
|
4 |
supplier_values = ["Supplier C", "Supplier D", "Supplier E", "Supplier F", "Supplier G"]
|
5 |
scope_values = ["Electricity", "Natural Gas"]
|
6 |
material_inputs_values = ["Cotton", "Polymer", "Chemical A", "Chemical B"]
|
7 |
transport_values = ["Cotton", "Polymer", "Chemical A", "Chemical B"]
|
8 |
waste_output_values = ["Waste sent to landfill"]
|
|
|
|
|
|
|
9 |
|
10 |
def calculate_emissions_supplier_specific(purchased_goods_data):
|
11 |
total_emissions = sum([qty * emission_factor for _, _, qty, emission_factor in purchased_goods_data])
|
12 |
st.header(f"Total Emissions for Supplier-specific Method: {total_emissions} kg CO2e")
|
13 |
-
|
14 |
|
15 |
def calculate_emissions_hybrid(scope1_and_scope2_data, material_inputs_data, transport_data, waste_output_data):
|
16 |
scope1_and_scope2_emissions = sum([float(item['Amount (kWh)']) * float(item['Emission factor (kg CO2e/kWh)']) for item in scope1_and_scope2_data])
|
@@ -26,7 +29,7 @@ def calculate_emissions_hybrid(scope1_and_scope2_data, material_inputs_data, tra
|
|
26 |
for i, item in enumerate(transport_data):
|
27 |
st.header(f"Emissions for Purchased Item {i + 1}: {transport_emissions_per_item[i]} kg CO2e")
|
28 |
|
29 |
-
|
30 |
|
31 |
def calculate_emissions_hybrid_pro(tshirt_data, scope_data, waste_output_data):
|
32 |
scope1_and_scope2_emissions = sum([float(item['Amount (kWh)']) * float(item['Emission factor (kg CO2e/kWh)']) for item in scope_data])
|
@@ -34,54 +37,1087 @@ def calculate_emissions_hybrid_pro(tshirt_data, scope_data, waste_output_data):
|
|
34 |
other_upstream_emissions = sum([float(item['Number of t-shirts purchased']) * float(item['Cradle-to-gate process emission factor (kg CO2e/per t-shirt(excluding scopes)']) for item in tshirt_data])
|
35 |
total_emissions = scope1_and_scope2_emissions + waste_output_emissions + other_upstream_emissions
|
36 |
st.header(f"Total Emissions for HybridPro Method: {total_emissions} kg CO2e")
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def main():
|
42 |
st.title("CO2 Emission Calculator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
|
78 |
input_fields = []
|
|
|
79 |
for i in range(num_items):
|
80 |
st.subheader(f"{label} {i + 1}")
|
81 |
input_data = {}
|
|
|
|
|
|
|
|
|
82 |
for value, heading in zip(values, headings):
|
83 |
-
|
|
|
|
|
84 |
input_fields.append(input_data)
|
|
|
85 |
return input_fields
|
86 |
|
87 |
def dynamic_input_fields_with_dropdown(label, prompt, values, headings):
|
@@ -107,5 +1143,31 @@ def dynamic_input_fields_with_emission_factor(label, prompt, values, headings):
|
|
107 |
input_fields.append(input_data)
|
108 |
return input_fields
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
if __name__ == "__main__":
|
111 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
fuel_values = ["Coal", "Natural Gas", "Oil", "Renewable Energy", "Other"]
|
3 |
purchased_goods_values = ["Cement", "Plaster", "Paint", "Timber", "Concrete"]
|
4 |
supplier_values = ["Supplier C", "Supplier D", "Supplier E", "Supplier F", "Supplier G"]
|
5 |
scope_values = ["Electricity", "Natural Gas"]
|
6 |
material_inputs_values = ["Cotton", "Polymer", "Chemical A", "Chemical B"]
|
7 |
transport_values = ["Cotton", "Polymer", "Chemical A", "Chemical B"]
|
8 |
waste_output_values = ["Waste sent to landfill"]
|
9 |
+
categories = ["Category 1", "Category 2", "Category 3", "Category 4", "Category 5",
|
10 |
+
"Category 6", "Category 7", "Category 8", "Category 9", "Category 10",
|
11 |
+
"Category 11", "Category 12", "Category 13", "Category 14", "Category 15"]
|
12 |
|
13 |
def calculate_emissions_supplier_specific(purchased_goods_data):
|
14 |
total_emissions = sum([qty * emission_factor for _, _, qty, emission_factor in purchased_goods_data])
|
15 |
st.header(f"Total Emissions for Supplier-specific Method: {total_emissions} kg CO2e")
|
16 |
+
|
17 |
|
18 |
def calculate_emissions_hybrid(scope1_and_scope2_data, material_inputs_data, transport_data, waste_output_data):
|
19 |
scope1_and_scope2_emissions = sum([float(item['Amount (kWh)']) * float(item['Emission factor (kg CO2e/kWh)']) for item in scope1_and_scope2_data])
|
|
|
29 |
for i, item in enumerate(transport_data):
|
30 |
st.header(f"Emissions for Purchased Item {i + 1}: {transport_emissions_per_item[i]} kg CO2e")
|
31 |
|
32 |
+
|
33 |
|
34 |
def calculate_emissions_hybrid_pro(tshirt_data, scope_data, waste_output_data):
|
35 |
scope1_and_scope2_emissions = sum([float(item['Amount (kWh)']) * float(item['Emission factor (kg CO2e/kWh)']) for item in scope_data])
|
|
|
37 |
other_upstream_emissions = sum([float(item['Number of t-shirts purchased']) * float(item['Cradle-to-gate process emission factor (kg CO2e/per t-shirt(excluding scopes)']) for item in tshirt_data])
|
38 |
total_emissions = scope1_and_scope2_emissions + waste_output_emissions + other_upstream_emissions
|
39 |
st.header(f"Total Emissions for HybridPro Method: {total_emissions} kg CO2e")
|
40 |
+
|
41 |
+
|
42 |
+
def collect_category_3_data():
|
43 |
+
st.header("Category 3: Fuel and Energy related activities not included in scope 1 and Scope 2")
|
44 |
+
|
45 |
+
method_options = ["Method 1: Upstream emissions of purchased fuels",
|
46 |
+
"Method 2: Upstream emissions of purchased electricity",
|
47 |
+
"Method 3: Transmission and distribution losses",
|
48 |
+
"Method 4: Emissions from power that is purchased and sold"]
|
49 |
+
selected_method = st.selectbox("Select Method", method_options)
|
50 |
+
|
51 |
+
if selected_method == "Method 1: Upstream emissions of purchased fuels":
|
52 |
+
fuel_data = dynamic_input_fields("Fuel Data", ["Fuel consumed (kWh)", "Upstream fuel emission factor (kg CO2e/kWh)"], ["Fuel consumed (kWh)", "Upstream fuel emission factor (kg CO2e/kWh)"])
|
53 |
+
calculate_emissions_category_3_method_1(fuel_data)
|
54 |
+
|
55 |
+
elif selected_method == "Method 2: Upstream emissions of purchased electricity":
|
56 |
+
selected_country = st.selectbox("Select country", ["Australia", "Canada", "India", "US", "Turkey"])
|
57 |
+
electricity_data = dynamic_input_fields("Electricity Data", ["Electricity"], ["Electricity"], country=selected_country)
|
58 |
+
steam_data = dynamic_input_fields("Steam Data", ["Steam"], ["Steam"], country=selected_country)
|
59 |
+
heating_data = dynamic_input_fields("Heating Data", ["Heating"], ["Heating"], country=selected_country)
|
60 |
+
cooling_data = dynamic_input_fields("Cooling Data", ["Cooling"], ["Cooling"], country=selected_country)
|
61 |
+
upstream_emission_factors = dynamic_input_fields("Upstream Emission Factors", ["Electricity", "Steam", "Heating", "Cooling"], ["Electricity", "Steam", "Heating", "Cooling"], country=selected_country)
|
62 |
+
calculate_emissions_category_3_method_2(electricity_data, steam_data, heating_data, cooling_data, upstream_emission_factors,selected_country)
|
63 |
+
|
64 |
+
elif selected_method == "Method 3: Transmission and distribution losses":
|
65 |
+
selected_country = st.selectbox("Select country", ["Australia", "Canada", "India", "US", "Turkey"])
|
66 |
+
electricity_data = dynamic_input_fields("Electricity Data", ["Electricity"], ["Electricity"], country=selected_country)
|
67 |
+
steam_data = dynamic_input_fields("Steam Data", ["Steam"], ["Steam"], country=selected_country)
|
68 |
+
heating_data = dynamic_input_fields("Heating Data", ["Heating"], ["Heating"], country=selected_country)
|
69 |
+
cooling_data = dynamic_input_fields("Cooling Data", ["Cooling"], ["Cooling"], country=selected_country)
|
70 |
+
t_and_d_loss_data = dynamic_input_fields("T&D Loss Data", ["Transmission"], ["Transmission"], country=selected_country)
|
71 |
+
upstream_emission_factors = dynamic_input_fields("Upstream Emission Factors", ["Electricity", "Steam", "Heating", "Cooling"], ["Electricity", "Steam", "Heating", "Cooling"], country=selected_country)
|
72 |
+
calculate_emissions_category_3_method_3(electricity_data,steam_data,heating_data,cooling_data,upstream_emission_factors, t_and_d_loss_data,selected_country)
|
73 |
+
|
74 |
+
elif selected_method == "Method 4: Emissions from power that is purchased and sold":
|
75 |
+
selected_country = st.selectbox("Select country", ["Australia", "Canada", "India", "US", "Turkey"])
|
76 |
+
electricity_data = dynamic_input_fields("Electricity Data", ["Electricity"], ["Electricity"],country=selected_country)
|
77 |
+
steam_data = dynamic_input_fields("Steam Data", ["Steam"], ["Steam"],country=selected_country)
|
78 |
+
heating_data = dynamic_input_fields("Heating Data", ["Heating"], ["Heating"],country=selected_country)
|
79 |
+
cooling_data = dynamic_input_fields("Cooling Data", ["Cooling"], ["Cooling"],country=selected_country)
|
80 |
+
upstream_emission_factors = dynamic_input_fields("Upstream Emission Factors", ["Electricity", "Steam", "Heating", "Cooling"], ["Country", "Electricity", "Steam", "Heating", "Cooling"], country=selected_country)
|
81 |
+
calculate_emissions_category_3_method_4(electricity_data,steam_data,heating_data,cooling_data,upstream_emission_factors,selected_country)
|
82 |
+
|
83 |
+
def calculate_emissions_category_3_method_1(fuel_data):
|
84 |
+
total_emissions = sum(
|
85 |
+
[
|
86 |
+
item["Fuel consumed (kWh)"] * (item["Upstream fuel emission factor (kg CO2e/kWh)"])
|
87 |
+
for item in fuel_data
|
88 |
+
]
|
89 |
+
)
|
90 |
+
st.header(f"Total Emissions for Upstream emissions of purchased fuels is {total_emissions} kg CO2e")
|
91 |
+
|
92 |
+
def calculate_emissions_category_3_method_2(electricity_data, steam_data, heating_data, cooling_data, upstream_emission_factor,selected_country):
|
93 |
+
country_electricity = next(item for item in electricity_data if item["Country"] == selected_country)["Electricity"]
|
94 |
+
country_steam = next(item for item in steam_data if item["Country"] == selected_country)["Steam"]
|
95 |
+
country_heating = next(item for item in heating_data if item["Country"] == selected_country)["Heating"]
|
96 |
+
country_cooling = next(item for item in cooling_data if item["Country"] == selected_country)["Cooling"]
|
97 |
+
country_factors = next(item for item in upstream_emission_factor if item["Country"] == selected_country)
|
98 |
+
|
99 |
+
total_emissions = (
|
100 |
+
country_electricity * country_factors["Electricity"]
|
101 |
+
+ country_steam * country_factors["Steam"]
|
102 |
+
+ country_heating * country_factors["Heating"]
|
103 |
+
+ country_cooling * country_factors["Cooling"]
|
104 |
+
)
|
105 |
+
|
106 |
+
st.header(f"Total Emissions for Upstream emissions of purchased electricity: {total_emissions} kg CO2e")
|
107 |
+
|
108 |
+
def calculate_emissions_category_3_method_3(electricity_data, steam_data, heating_data, cooling_data, upstream_emission_factors,t_and_d_loss, selected_country):
|
109 |
+
country_electricity = next(item for item in electricity_data if item["Country"] == selected_country)["Electricity"]
|
110 |
+
country_steam = next(item for item in steam_data if item["Country"] == selected_country)["Steam"]
|
111 |
+
country_heating = next(item for item in heating_data if item["Country"] == selected_country)["Heating"]
|
112 |
+
country_cooling = next(item for item in cooling_data if item["Country"] == selected_country)["Cooling"]
|
113 |
+
country_factors = next(item for item in upstream_emission_factors if item["Country"] == selected_country)
|
114 |
+
country_td = next(item for item in t_and_d_loss if item["Country"] == selected_country)
|
115 |
+
st.header(country_factors)
|
116 |
+
total_emissions = (
|
117 |
+
country_electricity * country_factors["Electricity"] * country_td["Transmission"]
|
118 |
+
+ country_steam * country_factors["Steam"] * country_td["Transmission"]
|
119 |
+
+ country_heating * country_factors["Heating"] * country_td["Transmission"]
|
120 |
+
+ country_cooling * country_factors["Cooling"] * country_td["Transmission"]
|
121 |
+
)
|
122 |
+
|
123 |
+
st.header(f"Total Emissions for Transmission and distribution losses: {total_emissions} kg CO2e")
|
124 |
+
|
125 |
+
def calculate_emissions_category_3_method_4(electricity_data, steam_data, heating_data, cooling_data, emission_factors, selected_country):
|
126 |
+
country_factors = next((item for item in emission_factors if item["Country"] == selected_country), None)
|
127 |
+
st.header(country_factors)
|
128 |
+
if country_factors is not None:
|
129 |
+
total_emissions = (
|
130 |
+
sum(item["Electricity"] * country_factors["Electricity"] for item in electricity_data)
|
131 |
+
+ sum(item["Steam"] * country_factors["Steam"] for item in steam_data)
|
132 |
+
+ sum(item["Heating"] * country_factors["Heating"] for item in heating_data)
|
133 |
+
+ sum(item["Cooling"] * country_factors["Cooling"] for item in cooling_data)
|
134 |
+
)
|
135 |
+
|
136 |
+
st.header(f"Total Emissions where power is purchased and sold: {total_emissions} kg CO2e")
|
137 |
+
else:
|
138 |
+
st.warning(f"No emission factors found for {selected_country} in emission_factors.")
|
139 |
+
|
140 |
+
|
141 |
+
def calculate_emissions_category_4_method_1(fuel_data, electricity_data, refrigerant_data, total_fuel_spend=None, total_distance_travelled=None):
|
142 |
+
fuel_emissions = sum([item["Fuel consumed (liters)"] * item["Emission factor (kg CO2e/liter)"] for item in fuel_data])
|
143 |
+
electricity_emissions = sum([item["Quantity of electricity consumed (kWh)"] * item["Emission factor for electricity grid (kg CO2e/kWh)"] for item in electricity_data])
|
144 |
+
refrigerant_emissions = sum([item["Refrigerant leakage (kg)"] * item["Global warming potential for refrigerant (kg CO2e)"] for item in refrigerant_data])
|
145 |
+
|
146 |
+
if total_fuel_spend:
|
147 |
+
quantities_of_fuel = sum([item["Total fuel spend ($)"] / item["Average fuel price ($/liter)"] for item in fuel_data])
|
148 |
+
fuel_emissions_from_spending = quantities_of_fuel * sum([item["Average fuel price ($/liter)"] * item["Emission factor (kg CO2e/liter)"] for item in fuel_data])
|
149 |
+
total_emissions = fuel_emissions + electricity_emissions + refrigerant_emissions + fuel_emissions_from_spending
|
150 |
+
elif total_distance_travelled:
|
151 |
+
quantities_of_fuel_consumed = sum([item["Total distance travelled (km)"] * item["Fuel efficiency of vehicle (liters/km)"] for item in fuel_data])
|
152 |
+
fuel_emissions_from_distance = quantities_of_fuel_consumed * sum([item["Emission factor for the fuel (kg CO2e/liter)"] for item in fuel_data])
|
153 |
+
total_emissions = fuel_emissions + electricity_emissions + refrigerant_emissions + fuel_emissions_from_distance
|
154 |
+
else:
|
155 |
+
total_emissions = fuel_emissions + electricity_emissions + refrigerant_emissions
|
156 |
+
|
157 |
+
st.header(f"Total Emissions for Fuel-based Method: {total_emissions} kg CO2e")
|
158 |
+
|
159 |
+
|
160 |
+
def calculate_emissions_category_4_method_2(fuel_data, average_efficiency_unladen, total_distance_travelled_unladen):
|
161 |
+
total_emissions_unladen = sum([item["Quantity of fuel consumed from backhaul"] * item["Emission factor for the fuel (kg CO2e/liter)"] for item in fuel_data])
|
162 |
+
total_emissions_unladen += sum([average_efficiency_unladen * total_distance_travelled_unladen * item["Emission factor for the fuel (kg CO2e/liter)"] for item in fuel_data])
|
163 |
+
|
164 |
+
st.header(f"Total Emissions for Unladen Backhaul: {total_emissions_unladen} kg CO2e")
|
165 |
+
|
166 |
+
|
167 |
+
def calculate_emissions_category_4_method_3(transport_data):
|
168 |
+
total_emissions_transport = sum([
|
169 |
+
item["Mass of goods purchased (tonnes)"] * item["Distance travelled in transport leg (km)"] * item["Emission factor of transport mode or vehicle type (kg CO2e/tonne-km)"]
|
170 |
+
for item in transport_data
|
171 |
+
])
|
172 |
+
|
173 |
+
st.header(f"Total Emissions for Transportation: {total_emissions_transport} kg CO2e")
|
174 |
+
|
175 |
+
|
176 |
+
def calculate_emissions_category_4_method_4(storage_data):
|
177 |
+
total_emissions_distribution = sum([
|
178 |
+
(
|
179 |
+
item["Fuel consumed (kWh)"] * item["Fuel emission factor (kg CO2e/kWh)"]
|
180 |
+
+ item["Electricity consumed (kWh)"] * item["Electricity emission factor (kg CO2e/kWh)"]
|
181 |
+
+ item["Refrigerant leakage (kg)"] * item["Refrigerant emission factor (kg CO2e/kg)"]
|
182 |
+
) * (
|
183 |
+
item["Volume of company A’s goods (m3)"] / item["Total volume of goods in storage facility (m3)"] if item["Total volume of goods in storage facility (m3)"] != 0 else 0
|
184 |
+
)
|
185 |
+
for item in storage_data
|
186 |
+
])
|
187 |
+
|
188 |
+
st.header(f"Total Emissions for Distribution: {total_emissions_distribution} kg CO2e")
|
189 |
+
|
190 |
+
|
191 |
+
def calculate_emissions_category_4_method_5(storage_data):
|
192 |
+
total_emissions_distribution = sum([
|
193 |
+
item["Volume of stored goods (m3)"] * item["Average number of days stored (days)"] * item["Emission factor for storage facility (kg CO2e/m3/day)"]
|
194 |
+
for item in storage_data
|
195 |
+
])
|
196 |
+
|
197 |
+
st.header(f"Total Emissions for Distribution (Method 5): {total_emissions_distribution} kg CO2e")
|
198 |
+
|
199 |
+
def calculate_emissions_category_5_method_1(waste_treatment_data):
|
200 |
+
total_emissions_category_5 = sum([
|
201 |
+
item["Allocated scope 1 and scope 2 emissions of waste treatment company"]
|
202 |
+
for item in waste_treatment_data
|
203 |
+
])
|
204 |
+
|
205 |
+
st.header(f"Total Emissions for Category 5 (Method 1): {total_emissions_category_5} kg CO2e")
|
206 |
+
|
207 |
+
def collect_category_4_method_1_data():
|
208 |
+
st.header("Category 4: Method 1 - Fuel-based Method")
|
209 |
+
|
210 |
+
fuel_data = dynamic_input_fields_with_emission_factor("Fuel Data", "Enter fuel data", ["Fuel consumed (liters)", "Emission factor (kg CO2e/liter)", "Total fuel spend ($)", "Average fuel price ($/liter)","Total distance travelled (km)"],
|
211 |
+
["Fuel consumed (liters)", "Emission factor (kg CO2e/liter)", "Total fuel spend ($)", "Average fuel price ($/liter)","Total distance travelled (km)"])
|
212 |
+
electricity_data = dynamic_input_fields_with_emission_factor("Electricity Data", "Enter electricity data", ["Quantity of electricity consumed (kWh)", "Emission factor for electricity grid (kg CO2e/kWh)"],
|
213 |
+
["Quantity of electricity consumed (kWh)", "Emission factor for electricity grid (kg CO2e/kWh)"])
|
214 |
+
refrigerant_data = dynamic_input_fields_with_emission_factor("Refrigerant Data", "Enter refrigerant data", ["Refrigerant leakage (kg)", "Global warming potential for refrigerant (kg CO2e)"],
|
215 |
+
["Refrigerant leakage (kg)", "Global warming potential for refrigerant (kg CO2e)"])
|
216 |
+
|
217 |
+
total_fuel_spend = st.checkbox("Calculate based on total fuel spend")
|
218 |
+
calculate_emissions_category_4_method_1(fuel_data, electricity_data, refrigerant_data, total_fuel_spend=total_fuel_spend)
|
219 |
+
|
220 |
+
def collect_category_4_method_2_data():
|
221 |
+
st.header("Category 4: Method 2 - Unladen Backhaul")
|
222 |
+
|
223 |
+
fuel_data = dynamic_input_fields_with_emission_factor("Fuel Data", "Enter fuel data", ["Quantity of fuel consumed from backhaul", "Emission factor for the fuel (kg CO2e/liter)"],
|
224 |
+
["Quantity of fuel consumed from backhaul", "Emission factor for the fuel (kg CO2e/liter)"])
|
225 |
+
average_efficiency_unladen = st.number_input("Average efficiency unladen", min_value=0.0, step=0.01, key="average_efficiency_unladen")
|
226 |
+
total_distance_travelled_unladen = st.number_input("Total distance travelled unladen (km)", min_value=0.0, step=0.01, key="total_distance_travelled_unladen")
|
227 |
+
|
228 |
+
calculate_emissions_category_4_method_2(fuel_data, average_efficiency_unladen, total_distance_travelled_unladen)
|
229 |
+
|
230 |
+
def collect_category_4_method_3_data():
|
231 |
+
st.header("Category 4: Method 3 - Transportation")
|
232 |
+
|
233 |
+
transport_data = dynamic_input_fields_with_emission_factor("Transport Data", "Enter transport data", ["Mass of goods purchased (tonnes)", "Distance travelled in transport leg (km)", "Emission factor of transport mode or vehicle type (kg CO2e/tonne-km)"],
|
234 |
+
["Mass of goods purchased (tonnes)", "Distance travelled in transport leg (km)", "Emission factor of transport mode or vehicle type (kg CO2e/tonne-km)"])
|
235 |
+
|
236 |
+
calculate_emissions_category_4_method_3(transport_data)
|
237 |
+
|
238 |
+
def collect_category_4_method_4_data():
|
239 |
+
st.header("Category 4: Method 4 - Distribution")
|
240 |
+
|
241 |
+
storage_data = dynamic_input_fields_with_emission_factor("Storage Data", "Enter storage data", ["Fuel consumed (kWh)", "Electricity consumed (kWh)", "Refrigerant leakage (kg)",
|
242 |
+
"Volume of company A’s goods (m3)", "Total volume of goods in storage facility (m3)",
|
243 |
+
"Fuel emission factor (kg CO2e/kWh)", "Electricity emission factor (kg CO2e/kWh)", "Refrigerant emission factor (kg CO2e/kg)"],
|
244 |
+
["Fuel consumed (kWh)", "Electricity consumed (kWh)", "Refrigerant leakage (kg)",
|
245 |
+
"Volume of company A’s goods (m3)", "Total volume of goods in storage facility (m3)",
|
246 |
+
"Fuel emission factor (kg CO2e/kWh)", "Electricity emission factor (kg CO2e/kWh)", "Refrigerant emission factor (kg CO2e/kg)"])
|
247 |
+
|
248 |
+
calculate_emissions_category_4_method_4(storage_data)
|
249 |
+
|
250 |
+
def collect_category_4_method_5_data():
|
251 |
+
st.header("Category 4: Method 5 - Distribution (Method 5)")
|
252 |
+
|
253 |
+
storage_data = dynamic_input_fields_with_emission_factor("Storage Data", "Enter storage data", ["Volume of stored goods (m3)", "Average number of days stored (days)", "Emission factor for storage facility (kg CO2e/m3/day)"],
|
254 |
+
["Volume of stored goods (m3)", "Average number of days stored (days)", "Emission factor for storage facility (kg CO2e/m3/day)"])
|
255 |
+
|
256 |
+
calculate_emissions_category_4_method_5(storage_data)
|
257 |
+
|
258 |
+
def get_input_category_5_method_1():
|
259 |
+
st.subheader("Method 1: CO2e emissions from waste generated in operations")
|
260 |
+
waste_treatment_data = dynamic_input_fields("Waste Treatment Provider", ["Allocated emissions"], ["Allocated scope 1 and scope 2 emissions of waste treatment company"])
|
261 |
+
calculate_emissions_category_5_method_1(waste_treatment_data)
|
262 |
+
|
263 |
+
def calculate_emissions_category_5_method_1(waste_treatment_data):
|
264 |
+
total_emissions = sum([item["Allocated emissions"] for item in waste_treatment_data])
|
265 |
+
st.header(f"Total Emissions for Method 1: {total_emissions} kg CO2e")
|
266 |
+
|
267 |
+
|
268 |
+
def get_input_category_5_method_2():
|
269 |
+
st.subheader("Method 2: CO2e emissions from waste generated in operations")
|
270 |
+
waste_type_data = dynamic_input_fields_with_emission_factor("Waste Type", "Enter waste type data",
|
271 |
+
["Waste produced (tonnes)", "Waste treatment", "Waste type and waste treatment specific emission factor"],
|
272 |
+
["Waste produced (tonnes)", "Waste treatment", "Waste type and waste treatment specific emission factor"])
|
273 |
+
calculate_emissions_category_5_method_2(waste_type_data)
|
274 |
+
|
275 |
+
def calculate_emissions_category_5_method_2(waste_type_data):
|
276 |
+
total_emissions = sum([
|
277 |
+
item["Waste produced (tonnes)"] * item["Waste type and waste treatment specific emission factor"]
|
278 |
+
for item in waste_type_data
|
279 |
+
])
|
280 |
+
st.header(f"Total Emissions for Method 2: {total_emissions} kg CO2e")
|
281 |
+
|
282 |
+
|
283 |
+
def get_input_category_5_method_3():
|
284 |
+
st.subheader("Method 3: Average Method - CO2e emissions from waste generated in operations")
|
285 |
+
waste_treatment_method_data = dynamic_input_fields_with_emission_factor("Waste Treatment Method", "Enter waste treatment method data",
|
286 |
+
["Total mass of waste (tonnes)", "Proportion (percent)", "Emission factor (kg CO2e/tonne)"],
|
287 |
+
["Total mass of waste (tonnes)", "Proportion (percent)", "Emission factor (kg CO2e/tonne)"])
|
288 |
+
calculate_emissions_category_5_method_3(waste_treatment_method_data)
|
289 |
+
|
290 |
+
def calculate_emissions_category_5_method_3(waste_treatment_method_data):
|
291 |
+
total_emissions = sum([
|
292 |
+
item["Total mass of waste (tonnes)"] * (item["Proportion (percent)"] / 100) * item["Emission factor (kg CO2e/tonne)"]
|
293 |
+
for item in waste_treatment_method_data
|
294 |
+
])
|
295 |
+
st.header(f"Total Emissions for Method 3: {total_emissions} kg CO2e")
|
296 |
+
|
297 |
+
def get_input_category_6_method_1():
|
298 |
+
st.subheader("Method 1: Distance-based Method - Business Travel Emissions")
|
299 |
+
road_travel_data = dynamic_input_fields_with_dropdown_int("Road Travel", "Select road travel data",
|
300 |
+
["Location", "Average employees per vehicle","Number of employees in group", "Car_type", "Distance (km)", "Emission factor (kg CO2e/vehicle-km)"],
|
301 |
+
["Location", "Average employees per vehicle", "Number of employees in group", "Car_type", "Distance (km)", "Emission factor (kg CO2e/vehicle-km)"])
|
302 |
+
|
303 |
+
air_travel_data = dynamic_input_fields_with_dropdown_int("Air Travel", "Select air travel data",
|
304 |
+
["Number of employees in group", "Flight type", "Distance (km)", "Emission factor (kg CO2e/passenger-km)"],
|
305 |
+
["Number of employees in group", "Flight type", "Distance (km)", "Emission factor (kg CO2e/passenger-km)"])
|
306 |
+
|
307 |
+
include_hotel = st.checkbox("Include Hotel Emissions (Optional)")
|
308 |
+
hotel_data = []
|
309 |
+
if include_hotel:
|
310 |
+
hotel_data = dynamic_input_fields("Hotel", ["Annual number of hotel nights", "Hotel emission factor (kg CO2e/night)"],
|
311 |
+
["Annual number of hotel nights", "Hotel emission factor (kg CO2e/night)"])
|
312 |
+
|
313 |
+
calculate_emissions_category_6_method_1(road_travel_data, air_travel_data, hotel_data)
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
def calculate_emissions_category_6_method_1(road_travel_data, air_travel_data, hotel_data):
|
318 |
+
road_travel_emissions = 0
|
319 |
+
for item in road_travel_data:
|
320 |
+
if item["Average employees per vehicle"] != 0:
|
321 |
+
road_travel_emissions += (item["Distance (km)"] / item["Average employees per vehicle"]) * item["Emission factor (kg CO2e/vehicle-km)"]
|
322 |
+
|
323 |
+
air_travel_emissions = sum([
|
324 |
+
item["Distance (km)"] * item["Emission factor (kg CO2e/passenger-km)"]
|
325 |
+
for item in air_travel_data
|
326 |
+
])
|
327 |
+
|
328 |
+
total_emissions = road_travel_emissions + air_travel_emissions
|
329 |
+
|
330 |
+
if hotel_data:
|
331 |
+
hotel_emissions = sum([
|
332 |
+
item["Annual number of hotel nights"] * item["Hotel emission factor (kg CO2e/night)"]
|
333 |
+
for item in hotel_data
|
334 |
+
])
|
335 |
+
total_emissions += hotel_emissions
|
336 |
+
|
337 |
+
st.header(f"Total Business Travel Emissions: {total_emissions} kg CO2e")
|
338 |
+
|
339 |
+
def get_input_category_7_method_1():
|
340 |
+
st.subheader("Method 1: Distance-based Method - Employee Travel Emissions")
|
341 |
+
|
342 |
+
employee_data = dynamic_input_fields_with_dropdown_int("Employee", "Select employee data",
|
343 |
+
["Rail commute (times per week)", "One way distance by rail (km)",
|
344 |
+
"Rail emission factor (kg CO2e/passenger-km)",
|
345 |
+
"Car commute (times per week)", "Car emission factor (kg CO2e/vehicle-km)",
|
346 |
+
"One way distance by car (km)"],
|
347 |
+
["Rail commute (times per week)", "One way distance by rail (km)",
|
348 |
+
"Rail emission factor (kg CO2e/passenger-km)",
|
349 |
+
"Car commute (times per week)", "Car emission factor (kg CO2e/vehicle-km)",
|
350 |
+
"One way distance by car (km)"])
|
351 |
+
|
352 |
+
telework_data = dynamic_input_fields_with_dropdown_int("Telework", "Select telework data",
|
353 |
+
["Quantities of energy consumed (kWh)", "Emission factor for energy source (kg CO2e/kWh)"],
|
354 |
+
["Quantities of energy consumed (kWh)", "Emission factor for energy source (kg CO2e/kWh)"])
|
355 |
+
|
356 |
+
calculate_emissions_category_7_method_1(employee_data, telework_data)
|
357 |
+
|
358 |
+
def calculate_emissions_category_7_method_1(employee_data, telework_data):
|
359 |
+
total_distance_rail = sum([
|
360 |
+
item["Rail commute (times per week)"] * 2 * 5 * item["One way distance by rail (km)"]
|
361 |
+
for item in employee_data
|
362 |
+
])
|
363 |
+
|
364 |
+
total_distance_car = sum([
|
365 |
+
item["Car commute (times per week)"] * 2 * 5 * item["One way distance by car (km)"]
|
366 |
+
for item in employee_data
|
367 |
+
])
|
368 |
+
|
369 |
+
total_emissions = sum([
|
370 |
+
(total_distance_rail * item["Rail emission factor (kg CO2e/passenger-km)"]) +
|
371 |
+
(total_distance_car * item["Car emission factor (kg CO2e/vehicle-km)"])
|
372 |
+
for item in employee_data
|
373 |
+
])
|
374 |
+
|
375 |
+
if telework_data:
|
376 |
+
total_emissions += sum([
|
377 |
+
item["Quantities of energy consumed (kWh)"] * item["Emission factor for energy source (kg CO2e/kWh)"]
|
378 |
+
for item in telework_data
|
379 |
+
])
|
380 |
+
|
381 |
+
st.header(f"Total Employee Travel Emissions (Method 1): {total_emissions} kg CO2e")
|
382 |
+
|
383 |
+
|
384 |
+
def get_input_category_7_method_2():
|
385 |
+
st.subheader("Method 2: Average-data Method - Employee Travel Emissions")
|
386 |
+
|
387 |
+
commute_data = dynamic_input_fields_with_dropdown_int("Commute Group", "Select commute group data",
|
388 |
+
["Percent of total commutes", "Average one-way distance (km)",
|
389 |
+
"Emission factor (kg CO2e/vehicle or passenger km)"],
|
390 |
+
["Percent of total commutes", "Average one-way distance (km)",
|
391 |
+
"Emission factor (kg CO2e/vehicle or passenger km)"])
|
392 |
+
|
393 |
+
total_employees = st.number_input("Enter the total number of employees:", min_value=1, step=1, key="total_employees")
|
394 |
+
|
395 |
+
calculate_emissions_category_7_method_2(commute_data, total_employees)
|
396 |
+
|
397 |
+
def calculate_emissions_category_7_method_2(commute_data, total_employees):
|
398 |
+
total_emissions = sum([
|
399 |
+
total_employees * (item["Percent of total commutes"] / 100) * 2 * 235 * item["Average one-way distance (km)"] *
|
400 |
+
item["Emission factor (kg CO2e/vehicle or passenger km)"]
|
401 |
+
for item in commute_data
|
402 |
+
])
|
403 |
+
|
404 |
+
st.header(f"Total Employee Travel Emissions (Method 2): {total_emissions} kg CO2e")
|
405 |
+
|
406 |
+
def get_input_category_8_method_1():
|
407 |
+
st.subheader("Method 1: Asset-specific method - Upstream Leased Assets Emissions")
|
408 |
+
asset_data = dynamic_input_fields("Upstream Leased Asset", ["Natural gas (kWh)", "Natural gas emission factor (kg CO2e/kWh)",
|
409 |
+
"Electricity (kWh)", "Electricity emission factor (kg CO2e/kWh)",
|
410 |
+
"Fugitive emissions", "Fugitive emission factor"],
|
411 |
+
["Natural gas (kWh)", "Natural gas emission factor (kg CO2e/kWh)",
|
412 |
+
"Electricity (kWh)", "Electricity emission factor (kg CO2e/kWh)",
|
413 |
+
"Fugitive emissions", "Fugitive emission factor"])
|
414 |
+
|
415 |
+
calculate_emissions_category_8_method_1(asset_data)
|
416 |
+
|
417 |
+
def calculate_emissions_category_8_method_1(asset_data):
|
418 |
+
total_emissions = sum([
|
419 |
+
(
|
420 |
+
item["Natural gas (kWh)"] * item["Natural gas emission factor (kg CO2e/kWh)"]
|
421 |
+
+ item["Electricity (kWh)"] * item["Electricity emission factor (kg CO2e/kWh)"]
|
422 |
+
+ item["Fugitive emissions"] * item["Fugitive emission factor"]
|
423 |
+
)
|
424 |
+
for item in asset_data
|
425 |
+
])
|
426 |
+
|
427 |
+
st.header(f"Total Emissions from Upstream Leased Assets (Asset-specific Method): {total_emissions} kg CO2e")
|
428 |
+
|
429 |
+
def calculate_emissions_category_8_method_2(lessor_data, leased_asset_data):
|
430 |
+
total_emissions = sum([
|
431 |
+
(
|
432 |
+
item["Fuel consumed (e.g., liter)"] * item["Emission factor for fuel source (e.g., kg CO2e/liter)"]
|
433 |
+
+ item["Refrigerant leakage (kg)"] * item["Emission factor for refrigerant (kg CO2e/kg)"]
|
434 |
+
+ item["Process emissions"]
|
435 |
+
+ item["Electricity, steam, heating, cooling consumed (e.g., kWh)"]
|
436 |
+
* item["Emission factor for electricity, steam, heating, cooling (e.g., kg CO2e/kWh)"]
|
437 |
+
)
|
438 |
+
for item in lessor_data
|
439 |
+
])
|
440 |
+
|
441 |
+
total_emissions_allocated = sum([
|
442 |
+
(item["Scope 1 and Scope 2 emissions of lessor (kg CO2e)"]
|
443 |
+
* item["Area, volume, quantity, etc., of the leased asset"]
|
444 |
+
/ item["Total area, volume, quantity, etc., of lessor assets"]) if item["Total area, volume, quantity, etc., of lessor assets"] != 0 else 0
|
445 |
+
for item in leased_asset_data
|
446 |
+
])
|
447 |
+
|
448 |
+
st.header(f"Total Emissions from Upstream Leased Assets (CO2e Emissions from Leased Assets Method): {total_emissions + total_emissions_allocated} kg CO2e")
|
449 |
+
|
450 |
+
def calculate_emissions_category_8_method_3(building_data):
|
451 |
+
total_emissions = sum([
|
452 |
+
item["Total floor space of building type (m2)"] * item["Average emission factor for building type (kg CO2e/m2/year)"]
|
453 |
+
for item in building_data
|
454 |
+
])
|
455 |
+
|
456 |
+
st.header(f"Total Emissions from Upstream Leased Assets (Average-data Method for Leased Buildings): {total_emissions} kg CO2e")
|
457 |
+
|
458 |
+
|
459 |
+
def calculate_emissions_category_8_method_4(asset_data):
|
460 |
+
total_emissions = sum([
|
461 |
+
item["Number of assets"] * item["Average emissions per asset type (kg CO2e/asset type/year)"]
|
462 |
+
for item in asset_data
|
463 |
+
])
|
464 |
+
|
465 |
+
st.header(f"Total Emissions from Upstream Leased Assets (Average-data Method for Other Leased Assets): {total_emissions} kg CO2e")
|
466 |
+
|
467 |
+
|
468 |
+
def get_input_category_8_method_2():
|
469 |
+
st.subheader("Method 2: CO2e emissions from leased assets - Upstream Leased Assets Emissions")
|
470 |
+
lessor_data = dynamic_input_fields("Lessor", ["Fuel consumed (e.g., liter)", "Emission factor for fuel source (e.g., kg CO2e/liter)",
|
471 |
+
"Refrigerant leakage (kg)", "Emission factor for refrigerant (kg CO2e/kg)",
|
472 |
+
"Process emissions", "Electricity, steam, heating, cooling consumed (e.g., kWh)",
|
473 |
+
"Emission factor for electricity, steam, heating, cooling (e.g., kg CO2e/kWh)"],
|
474 |
+
["Fuel consumed (e.g., liter)", "Emission factor for fuel source (e.g., kg CO2e/liter)",
|
475 |
+
"Refrigerant leakage (kg)", "Emission factor for refrigerant (kg CO2e/kg)",
|
476 |
+
"Process emissions", "Electricity, steam, heating, cooling consumed (e.g., kWh)",
|
477 |
+
"Emission factor for electricity, steam, heating, cooling (e.g., kg CO2e/kWh)"])
|
478 |
+
|
479 |
+
leased_asset_data = dynamic_input_fields("Leased Asset", ["Scope 1 and Scope 2 emissions of lessor (kg CO2e)",
|
480 |
+
"Area, volume, quantity, etc., of the leased asset",
|
481 |
+
"Total area, volume, quantity, etc., of lessor assets"],
|
482 |
+
["Scope 1 and Scope 2 emissions of lessor (kg CO2e)",
|
483 |
+
"Area, volume, quantity, etc., of the leased asset",
|
484 |
+
"Total area, volume, quantity, etc., of lessor assets"])
|
485 |
+
|
486 |
+
calculate_emissions_category_8_method_2(lessor_data, leased_asset_data)
|
487 |
+
|
488 |
+
|
489 |
+
def get_input_category_8_method_3():
|
490 |
+
st.subheader("Method 3: Average-data method for leased buildings - Upstream Leased Assets Emissions")
|
491 |
+
building_data = dynamic_input_fields("Building", ["Total floor space of building type (m2)",
|
492 |
+
"Average emission factor for building type (kg CO2e/m2/year)"],
|
493 |
+
["Total floor space of building type (m2)",
|
494 |
+
"Average emission factor for building type (kg CO2e/m2/year)"])
|
495 |
+
|
496 |
+
calculate_emissions_category_8_method_3(building_data)
|
497 |
+
|
498 |
+
|
499 |
+
def get_input_category_8_method_4():
|
500 |
+
st.subheader("Method 4: Average-data method for leased assets other than buildings - Upstream Leased Assets Emissions")
|
501 |
+
asset_data = dynamic_input_fields("Leased Asset", ["Number of assets", "Average emissions per asset type (kg CO2e/asset type/year)"],
|
502 |
+
["Number of assets", "Average emissions per asset type (kg CO2e/asset type/year)"])
|
503 |
+
|
504 |
+
calculate_emissions_category_8_method_4(asset_data)
|
505 |
+
|
506 |
+
def calculate_emissions_category_9_method_1(transportation_data):
|
507 |
+
total_emissions = sum([
|
508 |
+
item["Mass of goods sold (tonnes)"] * item["Total downstream distance transported (km)"]
|
509 |
+
* item["Emission factor (kg CO2e/tonne-km)"]
|
510 |
+
for item in transportation_data
|
511 |
+
])
|
512 |
+
|
513 |
+
st.header(f"Total Emissions from Downstream Transportation: {total_emissions} kg CO2e")
|
514 |
+
|
515 |
+
def get_input_category_9_method_1():
|
516 |
+
st.subheader("Method 1: Downstream Transportation Emissions")
|
517 |
+
transportation_data = dynamic_input_fields("Transportation", ["Mass of goods sold (tonnes)",
|
518 |
+
"Total downstream distance transported (km)",
|
519 |
+
"Transport mode or vehicle type",
|
520 |
+
"Emission factor (kg CO2e/tonne-km)"],
|
521 |
+
["Mass of goods sold (tonnes)",
|
522 |
+
"Total downstream distance transported (km)",
|
523 |
+
"Transport mode or vehicle type",
|
524 |
+
"Emission factor (kg CO2e/tonne-km)"])
|
525 |
+
|
526 |
+
calculate_emissions_category_9_method_1(transportation_data)
|
527 |
+
|
528 |
+
def get_input_category_10_method_1():
|
529 |
+
st.subheader("Method 1: Site-specific Method - Processing of Sold Intermediate Products")
|
530 |
+
|
531 |
+
fuel_data = dynamic_input_fields("Fuel", ["Quantity consumed (e.g., liter)", "Life cycle emission factor (kg CO2e/liter)"],
|
532 |
+
["Quantity consumed (e.g., liter)", "Life cycle emission factor (kg CO2e/liter)"])
|
533 |
+
|
534 |
+
electricity_data = dynamic_input_fields("Electricity", ["Quantity consumed (e.g., kWh)", "Life cycle emission factor (kg CO2e/kWh)"],
|
535 |
+
["Quantity consumed (e.g., kWh)", "Life cycle emission factor (kg CO2e/kWh)"])
|
536 |
+
|
537 |
+
refrigerant_data = dynamic_input_fields("Refrigerant", ["Quantity of leakage (kg)", "Global Warming Potential (kg CO2e/kg)"],
|
538 |
+
["Quantity of leakage (kg)", "Global Warming Potential (kg CO2e/kg)"])
|
539 |
|
540 |
+
process_emissions = st.number_input("Sum of Process Emissions (kg CO2e)", min_value=0.0, step=0.1)
|
541 |
|
542 |
+
include_waste = st.checkbox("Include Waste Emissions (Optional)")
|
543 |
+
waste_data = []
|
544 |
+
if include_waste:
|
545 |
+
waste_data = dynamic_input_fields("Waste", ["Mass of waste output (kg)", "Emission factor (kg CO2e/kg waste)"],
|
546 |
+
["Mass of waste output (kg)", "Emission factor (kg CO2e/kg waste)"])
|
547 |
+
|
548 |
+
calculate_emissions_category_10_method_1(fuel_data, electricity_data, refrigerant_data, process_emissions, waste_data)
|
549 |
+
|
550 |
+
def calculate_emissions_category_10_method_1(fuel_data, electricity_data, refrigerant_data, process_emissions, waste_data):
|
551 |
+
total_fuel_emissions = sum([
|
552 |
+
item["Quantity consumed (e.g., liter)"] * item["Life cycle emission factor (kg CO2e/liter)"]
|
553 |
+
for item in fuel_data
|
554 |
+
])
|
555 |
+
|
556 |
+
total_electricity_emissions = sum([
|
557 |
+
item["Quantity consumed (e.g., kWh)"] * item["Life cycle emission factor (kg CO2e/kWh)"]
|
558 |
+
for item in electricity_data
|
559 |
+
])
|
560 |
+
|
561 |
+
total_refrigerant_emissions = sum([
|
562 |
+
item["Quantity of leakage (kg)"] * item["Global Warming Potential (kg CO2e/kg)"]
|
563 |
+
for item in refrigerant_data
|
564 |
+
])
|
565 |
+
|
566 |
+
total_waste_emissions = 0.0
|
567 |
+
if waste_data:
|
568 |
+
total_waste_emissions = sum([
|
569 |
+
item["Mass of waste output (kg)"] * item["Emission factor (kg CO2e/kg waste)"]
|
570 |
+
for item in waste_data
|
571 |
+
])
|
572 |
+
|
573 |
+
total_emissions = total_fuel_emissions + total_electricity_emissions + total_refrigerant_emissions + process_emissions + total_waste_emissions
|
574 |
+
st.header(f"Total Emissions from Processing of Sold Intermediate Products (Method 1): {total_emissions} kg CO2e")
|
575 |
+
|
576 |
+
def get_input_category_10_method_2():
|
577 |
+
st.subheader("Method 2: Average-data Method - Processing of Sold Intermediate Products")
|
578 |
+
|
579 |
+
product_data = dynamic_input_fields("Intermediate Product", ["Mass of sold intermediate product (kg)", "Emission factor of processing stages (kg CO2e/kg of final product)"],
|
580 |
+
["Mass of sold intermediate product (kg)", "Emission factor of processing stages (kg CO2e/kg of final product)"])
|
581 |
+
|
582 |
+
calculate_emissions_category_10_method_2(product_data)
|
583 |
+
|
584 |
+
def calculate_emissions_category_10_method_2(product_data):
|
585 |
+
total_emissions = sum([
|
586 |
+
item["Mass of sold intermediate product (kg)"] * item["Emission factor of processing stages (kg CO2e/kg of final product)"]
|
587 |
+
for item in product_data
|
588 |
+
])
|
589 |
+
st.header(f"Total Emissions from Processing of Sold Intermediate Products (Method 2): {total_emissions} kg CO2e")
|
590 |
+
|
591 |
+
def get_input_category_11_method_1():
|
592 |
+
st.subheader("Method 1: Direct Use-phase Emissions from Products Consuming Energy (Fuels or Electricity) during Use")
|
593 |
+
|
594 |
+
product_data = dynamic_input_fields("Product", ["Total lifetime expected uses", "Number sold",
|
595 |
+
"Fuel consumed per use (kWh)", "Emission factor for fuel (kg CO2e/kWh)"],
|
596 |
+
["Total lifetime expected uses", "Number sold",
|
597 |
+
"Fuel consumed per use (kWh)", "Emission factor for fuel (kg CO2e/kWh)"])
|
598 |
+
|
599 |
+
include_electricity = st.checkbox("Include Electricity Emissions (Optional)")
|
600 |
+
electricity_data = []
|
601 |
+
if include_electricity:
|
602 |
+
electricity_data = dynamic_input_fields("Product Electricity", ["Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"],
|
603 |
+
["Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"])
|
604 |
+
|
605 |
+
refrigerant_data = dynamic_input_fields("Product Refrigerant", ["Refrigerant leakage per use (kg)", "Global Warming Potential (kg CO2e/kg)"],
|
606 |
+
["Refrigerant leakage per use (kg)", "Global Warming Potential (kg CO2e/kg)"])
|
607 |
+
|
608 |
+
calculate_emissions_category_11_method_1(product_data, electricity_data, refrigerant_data)
|
609 |
+
|
610 |
+
def calculate_emissions_category_11_method_1(product_data, electricity_data, refrigerant_data):
|
611 |
+
total_fuel_emissions = sum([
|
612 |
+
item["Total lifetime expected uses"] * item["Number sold"] * item["Fuel consumed per use (kWh)"] * item["Emission factor for fuel (kg CO2e/kWh)"]
|
613 |
+
for item in product_data
|
614 |
+
])
|
615 |
+
|
616 |
+
total_electricity_emissions = 0.0
|
617 |
+
if electricity_data:
|
618 |
+
total_electricity_emissions = sum([
|
619 |
+
item1["Total lifetime expected uses"] * item1["Number sold"] * item["Electricity consumed per use (kWh)"] * item["Emission factor for electricity (kg CO2e/kWh)"]
|
620 |
+
for item in electricity_data for item1 in product_data
|
621 |
+
])
|
622 |
+
|
623 |
+
total_refrigerant_emissions = sum([
|
624 |
+
item1["Total lifetime expected uses"] * item1["Number sold"] * item["Refrigerant leakage per use (kg)"] * item["Global Warming Potential (kg CO2e/kg)"]
|
625 |
+
for item in refrigerant_data for item1 in product_data
|
626 |
+
])
|
627 |
+
|
628 |
+
total_emissions = total_fuel_emissions + total_electricity_emissions + total_refrigerant_emissions
|
629 |
+
st.header(f"Total Emissions from Use of Sold Products (Method 1): {total_emissions} kg CO2e")
|
630 |
+
|
631 |
+
def get_input_category_11_method_2():
|
632 |
+
st.subheader("Method 2: Direct Use-phase Emissions from Combusted Fuels and Feedstocks")
|
633 |
+
|
634 |
+
fuel_data = dynamic_input_fields("Fuel/Feedstock", ["Total quantity sold (e.g., kWh)", "Combustion emission factor (kg CO2e/kWh)"],
|
635 |
+
["Total quantity sold (e.g., kWh)", "Combustion emission factor (kg CO2e/kWh)"])
|
636 |
+
|
637 |
+
calculate_emissions_category_11_method_2(fuel_data)
|
638 |
+
|
639 |
+
def calculate_emissions_category_11_method_2(fuel_data):
|
640 |
+
total_fuel_emissions = sum([
|
641 |
+
item["Total quantity sold (e.g., kWh)"] * item["Combustion emission factor (kg CO2e/kWh)"]
|
642 |
+
for item in fuel_data
|
643 |
+
])
|
644 |
+
st.header(f"Total Emissions from Use of Sold Products (Method 2): {total_fuel_emissions} kg CO2e")
|
645 |
+
|
646 |
+
def get_input_category_11_method_3():
|
647 |
+
st.subheader("Method 3: Direct Use-phase Emissions from Greenhouse Gases and Products Containing or Forming Greenhouse Gases")
|
648 |
+
|
649 |
+
ghg_data = dynamic_input_fields("GHG/Product Group", ["GHG contained per product", "Total Number of products sold",
|
650 |
+
"% of GHG released during lifetime use of product", "GWP of the GHG"],
|
651 |
+
["GHG contained per product", "Total Number of products sold",
|
652 |
+
"% of GHG released during lifetime use of product", "GWP of the GHG"])
|
653 |
+
|
654 |
+
calculate_emissions_category_11_method_3(ghg_data)
|
655 |
+
|
656 |
+
def calculate_emissions_category_11_method_3(ghg_data):
|
657 |
+
total_emissions = sum([
|
658 |
+
item["GHG contained per product"] * item["Total Number of products sold"] *
|
659 |
+
item["% of GHG released during lifetime use of product"] * item["GWP of the GHG"]
|
660 |
+
for item in ghg_data
|
661 |
+
])
|
662 |
+
st.header(f"Total Emissions from Use of Sold Products (Method 3): {total_emissions} kg CO2e")
|
663 |
+
|
664 |
+
def get_input_category_11_method_4():
|
665 |
+
st.subheader("Method 4: Indirect Use-phase CO2e Emissions of Products")
|
666 |
+
|
667 |
+
use_scenario_data = dynamic_input_fields("Use Scenario", ["% of total lifetime uses", "Number sold",
|
668 |
+
"Fuel consumed per use (e.g., kWh)", "Emission factor for fuel (e.g., kg CO2e/kWh)"],
|
669 |
+
["% of total lifetime uses", "Number sold",
|
670 |
+
"Fuel consumed per use (e.g., kWh)", "Emission factor for fuel (e.g., kg CO2e/kWh)"])
|
671 |
+
|
672 |
+
include_electricity = st.checkbox("Include Electricity Emissions (Optional)")
|
673 |
+
electricity_data = []
|
674 |
+
if include_electricity:
|
675 |
+
electricity_data = dynamic_input_fields("Use Scenario electricity", ["% of total lifetime uses", "Number sold",
|
676 |
+
"Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"],
|
677 |
+
["% of total lifetime uses", "Number sold",
|
678 |
+
"Electricity consumed per use (kWh)", "Emission factor for electricity (kg CO2e/kWh)"])
|
679 |
+
|
680 |
+
refrigerant_data = dynamic_input_fields("Use Scenario refrigerant", ["% of total lifetime uses", "Number sold",
|
681 |
+
"Refrigerant leakage per use (kg)", "Emission factor for refrigerant (kg CO2e/kg)"],
|
682 |
+
["% of total lifetime uses", "Number sold",
|
683 |
+
"Refrigerant leakage per use (kg)", "Emission factor for refrigerant (kg CO2e/kg)"])
|
684 |
+
|
685 |
+
ghg_data = dynamic_input_fields("Use Scenario ghg data", ["% of total lifetime uses", "Number sold",
|
686 |
+
"GHG emitted indirectly (kg)", "GWP of the GHG"],
|
687 |
+
["% of total lifetime uses", "Number sold",
|
688 |
+
"GHG emitted indirectly (kg)", "GWP of the GHG"])
|
689 |
+
|
690 |
+
calculate_emissions_category_11_method_4(use_scenario_data, electricity_data, refrigerant_data, ghg_data)
|
691 |
+
|
692 |
+
def calculate_emissions_category_11_method_4(use_scenario_data, electricity_data, refrigerant_data, ghg_data):
|
693 |
+
total_fuel_emissions = sum([
|
694 |
+
item["% of total lifetime uses"] * item["Number sold"] * item["Fuel consumed per use (e.g., kWh)"] * item["Emission factor for fuel (e.g., kg CO2e/kWh)"]
|
695 |
+
for item in use_scenario_data
|
696 |
+
])
|
697 |
+
|
698 |
+
total_electricity_emissions = 0.0
|
699 |
+
if electricity_data:
|
700 |
+
total_electricity_emissions = sum([
|
701 |
+
item["% of total lifetime uses"] * item["Number sold"] * item["Electricity consumed per use (kWh)"] * item["Emission factor for electricity (kg CO2e/kWh)"]
|
702 |
+
for item in electricity_data
|
703 |
+
])
|
704 |
+
|
705 |
+
total_refrigerant_emissions = sum([
|
706 |
+
item["% of total lifetime uses"] * item["Number sold"] * item["Refrigerant leakage per use (kg)"] * item["Emission factor for refrigerant (kg CO2e/kg)"]
|
707 |
+
for item in refrigerant_data
|
708 |
+
])
|
709 |
+
|
710 |
+
total_ghg_emissions = sum([
|
711 |
+
item["% of total lifetime uses"] * item["Number sold"] * item["GHG emitted indirectly (kg)"] * item["GWP of the GHG"]
|
712 |
+
for item in ghg_data
|
713 |
+
])
|
714 |
+
|
715 |
+
total_emissions = total_fuel_emissions + total_electricity_emissions + total_refrigerant_emissions + total_ghg_emissions
|
716 |
+
st.header(f"Total Emissions from Use of Sold Products (Method 4): {total_emissions} kg CO2e")
|
717 |
+
|
718 |
+
def get_input_category_11_method_5():
|
719 |
+
st.subheader("Method 5: Use-phase CO2e Emissions of Sold Intermediate Products")
|
720 |
+
|
721 |
+
intermediate_product_data = dynamic_input_fields("Intermediate Product", ["Total intermediate products sold",
|
722 |
+
"Total lifetime uses of final sold product",
|
723 |
+
"Emissions per use of sold intermediate product (kg CO2e/use)"],
|
724 |
+
["Total intermediate products sold",
|
725 |
+
"Total lifetime uses of final sold product",
|
726 |
+
"Emissions per use of sold intermediate product (kg CO2e/use)"])
|
727 |
+
|
728 |
+
calculate_emissions_category_11_method_5(intermediate_product_data)
|
729 |
+
|
730 |
+
def calculate_emissions_category_11_method_5(intermediate_product_data):
|
731 |
+
total_emissions = sum([
|
732 |
+
item["Total intermediate products sold"] * item["Total lifetime uses of final sold product"] *
|
733 |
+
item["Emissions per use of sold intermediate product (kg CO2e/use)"]
|
734 |
+
for item in intermediate_product_data
|
735 |
+
])
|
736 |
+
st.header(f"Total Emissions from Use of Sold Products (Method 5): {total_emissions} kg CO2e")
|
737 |
+
|
738 |
+
def get_input_category_12_method_1():
|
739 |
+
st.subheader("Category 12: End-of-Life Treatment of Sold Products - Method 1: Waste-type-specific method")
|
740 |
+
|
741 |
+
waste_data = dynamic_input_fields("Waste Treatment Method", ["Total mass of sold products and packaging (kg)",
|
742 |
+
"Proportion of waste produced (%)",
|
743 |
+
"Emission factor of waste treatment method (kg CO2e/kg)"],
|
744 |
+
["Total mass of sold products and packaging (kg)",
|
745 |
+
"Proportion of waste produced (%)",
|
746 |
+
"Emission factor of waste treatment method (kg CO2e/kg)"])
|
747 |
+
|
748 |
+
calculate_emissions_category_12_method_1(waste_data)
|
749 |
+
|
750 |
+
def calculate_emissions_category_12_method_1(waste_data):
|
751 |
+
total_emissions = sum([
|
752 |
+
item["Total mass of sold products and packaging (kg)"] *
|
753 |
+
(item["Proportion of waste produced (%)"] / 100) *
|
754 |
+
item["Emission factor of waste treatment method (kg CO2e/kg)"]
|
755 |
+
for item in waste_data
|
756 |
+
])
|
757 |
+
st.header(f"Total CO2e Emissions from End-of-Life Treatment of Sold Products (Method 1): {total_emissions} kg CO2e")
|
758 |
+
|
759 |
+
def get_input_category_13():
|
760 |
+
st.subheader("Category 13: Downstream Leased Assets")
|
761 |
+
|
762 |
+
leased_assets_data = dynamic_input_fields("Lessee", ["Scope 1 and Scope 2 emissions (kg CO2e)",
|
763 |
+
"Physical area of the leased asset (e.g., area, volume)"],
|
764 |
+
["Scope 1 and Scope 2 emissions (kg CO2e)",
|
765 |
+
"Physical area of the leased asset (e.g., area, volume)"])
|
766 |
+
|
767 |
+
calculate_emissions_category_13(leased_assets_data)
|
768 |
+
|
769 |
+
def calculate_emissions_category_13(leased_assets_data):
|
770 |
+
total_physical_area = calculate_total_physical_area(leased_assets_data)
|
771 |
+
|
772 |
+
total_emissions = sum([
|
773 |
+
item["Scope 1 and Scope 2 emissions (kg CO2e)"] *
|
774 |
+
(item["Physical area of the leased asset (e.g., area, volume)"] / total_physical_area) if total_physical_area!=0 else 0
|
775 |
+
for item in leased_assets_data
|
776 |
+
])
|
777 |
+
st.header(f"Total CO2e Emissions from Leased Assets (Category 13): {total_emissions} kg CO2e")
|
778 |
+
|
779 |
+
def calculate_total_physical_area(leased_assets_data):
|
780 |
+
return sum([item["Physical area of the leased asset (e.g., area, volume)"] for item in leased_assets_data])
|
781 |
+
|
782 |
+
def get_input_category_14_method_1():
|
783 |
+
st.subheader("Category 14: Franchises - Method 1: Franchise-specific method")
|
784 |
+
|
785 |
+
franchise_data = dynamic_input_fields("Franchise", ["Scope 1 emissions (kg CO2e)", "Scope 2 emissions (kg CO2e)"],
|
786 |
+
["Scope 1 emissions (kg CO2e)", "Scope 2 emissions (kg CO2e)"])
|
787 |
+
|
788 |
+
calculate_emissions_category_14_method_1(franchise_data)
|
789 |
+
|
790 |
+
def calculate_emissions_category_14_method_1(franchise_data):
|
791 |
+
total_emissions = sum([
|
792 |
+
item["Scope 1 emissions (kg CO2e)"] + item["Scope 2 emissions (kg CO2e)"]
|
793 |
+
for item in franchise_data
|
794 |
+
])
|
795 |
+
st.header(f"Total CO2e Emissions from Franchises (Method 1): {total_emissions} kg CO2e")
|
796 |
+
|
797 |
+
def get_input_category_14_method_2():
|
798 |
+
st.subheader("Category 14: Franchises - Method 2: Allocating emissions from franchise buildings")
|
799 |
+
|
800 |
+
franchise_building_data = dynamic_input_fields("Franchise Building",
|
801 |
+
["Energy use from franchise (kWh)", "Franchise's area (m2)",
|
802 |
+
"Building's total area (m2)", "Building's occupancy rate"],
|
803 |
+
["Energy use from franchise (kWh)", "Franchise's area (m2)",
|
804 |
+
"Building's total area (m2)", "Building's occupancy rate"])
|
805 |
+
|
806 |
+
calculate_emissions_category_14_method_2(franchise_building_data)
|
807 |
+
|
808 |
+
def calculate_emissions_category_14_method_2(franchise_building_data):
|
809 |
+
total_emissions = sum([
|
810 |
+
item["Energy use from franchise (kWh)"] *
|
811 |
+
(item["Franchise's area (m2)"] / item["Building's total area (m2)"] * item["Building's occupancy rate"]) if item["Building's total area (m2)"] * item["Building's occupancy rate"] !=0 else 0
|
812 |
+
for item in franchise_building_data
|
813 |
+
])
|
814 |
+
st.header(f"Total CO2e Emissions from Franchises (Method 2): {total_emissions} kg CO2e")
|
815 |
+
|
816 |
+
def get_input_category_14_method_3():
|
817 |
+
st.subheader("Category 14: Franchises - Method 3: Extrapolating emissions from sample groups")
|
818 |
+
|
819 |
+
franchise_groups_data = dynamic_input_fields("Franchise Group", ["Total emissions from sampled franchises within group",
|
820 |
+
"Total number of franchises within group",
|
821 |
+
"Number of franchises sampled within group"],
|
822 |
+
["Total emissions from sampled franchises within group",
|
823 |
+
"Total number of franchises within group",
|
824 |
+
"Number of franchises sampled within group"])
|
825 |
+
|
826 |
+
calculate_emissions_category_14_method_3(franchise_groups_data)
|
827 |
+
|
828 |
+
def calculate_emissions_category_14_method_3(franchise_groups_data):
|
829 |
+
total_emissions = sum([
|
830 |
+
(item["Total emissions from sampled franchises within group"] / item["Total number of franchises within group"]) *
|
831 |
+
item["Number of franchises sampled within group"] if item["Total number of franchises within group"]!=0 else 0
|
832 |
+
for item in franchise_groups_data
|
833 |
+
])
|
834 |
+
st.header(f"Total CO2e Emissions from Franchises (Method 3): {total_emissions} kg CO2e")
|
835 |
+
|
836 |
+
def get_input_category_14_method_4():
|
837 |
+
st.subheader("Category 14: Franchises - Method 4: Average data method for leased buildings (if floor space data is available)")
|
838 |
+
|
839 |
+
building_types_data = dynamic_input_fields("Building Type", ["Total floor space of building type (m2)",
|
840 |
+
"Average emission factor for building type (kg CO2e/m2/year)"],
|
841 |
+
["Total floor space of building type (m2)",
|
842 |
+
"Average emission factor for building type (kg CO2e/m2/year)"])
|
843 |
+
|
844 |
+
calculate_emissions_category_14_method_4(building_types_data)
|
845 |
+
|
846 |
+
def calculate_emissions_category_14_method_4(building_types_data):
|
847 |
+
total_emissions = sum([
|
848 |
+
item["Total floor space of building type (m2)"] * item["Average emission factor for building type (kg CO2e/m2/year)"]
|
849 |
+
for item in building_types_data
|
850 |
+
])
|
851 |
+
st.header(f"Total CO2e Emissions from Franchises (Method 4): {total_emissions} kg CO2e")
|
852 |
+
|
853 |
+
def get_input_category_14_method_5():
|
854 |
+
st.subheader("Category 14: Franchises - Method 5: Average data method for other asset types or for leased buildings where floor space data is not available")
|
855 |
+
|
856 |
+
building_asset_types_data = dynamic_input_fields("Building/Asset Type", ["Number of buildings or assets",
|
857 |
+
"Average emissions per building or asset type per year (kg CO2e/building or asset type/year)"],
|
858 |
+
["Number of buildings or assets",
|
859 |
+
"Average emissions per building or asset type per year (kg CO2e/building or asset type/year)"])
|
860 |
+
|
861 |
+
calculate_emissions_category_14_method_5(building_asset_types_data)
|
862 |
+
|
863 |
+
def calculate_emissions_category_14_method_5(building_asset_types_data):
|
864 |
+
total_emissions = sum([
|
865 |
+
item["Number of buildings or assets"] * item["Average emissions per building or asset type per year (kg CO2e/building or asset type/year)"]
|
866 |
+
for item in building_asset_types_data
|
867 |
+
])
|
868 |
+
st.header(f"Total CO2e Emissions from Franchises (Method 5): {total_emissions} kg CO2e")
|
869 |
+
|
870 |
+
def get_input_category_15_method_1():
|
871 |
+
st.subheader("Category 15: Investments - Method 1: Investment-specific method for equity investments")
|
872 |
+
|
873 |
+
equity_investment_data = dynamic_input_fields("Equity Investment",
|
874 |
+
["Scope 1 and scope 2 emissions of investee company (tonnes CO2e)",
|
875 |
+
"Reporting company’s share of equity (%)"],
|
876 |
+
["Scope 1 and scope 2 emissions of investee company (tonnes CO2e)",
|
877 |
+
"Reporting company’s share of equity (%)"])
|
878 |
+
|
879 |
+
calculate_emissions_category_15_method_1(equity_investment_data)
|
880 |
+
|
881 |
+
def calculate_emissions_category_15_method_1(equity_investment_data):
|
882 |
+
total_emissions = sum([
|
883 |
+
item["Scope 1 and scope 2 emissions of investee company (tonnes CO2e)"] *
|
884 |
+
(item["Reporting company’s share of equity (%)"] / 100)
|
885 |
+
for item in equity_investment_data
|
886 |
+
])
|
887 |
+
st.header(f"Total CO2e Emissions from Investments (Method 1): {total_emissions} tonnes CO2e")
|
888 |
+
|
889 |
+
def get_input_category_15_method_2():
|
890 |
+
st.subheader("Category 15: Investments - Method 2: Average data method for equity investments")
|
891 |
+
|
892 |
+
equity_investment_average_data = dynamic_input_fields("Equity Investment Average Data",
|
893 |
+
["Investee company total revenue ($)",
|
894 |
+
"Emission factor for investee’s sector (kg CO2e/$ revenue)",
|
895 |
+
"Reporting company’s share of equity (%)"],
|
896 |
+
["Investee company total revenue ($)",
|
897 |
+
"Emission factor for investee’s sector (kg CO2e/$ revenue)",
|
898 |
+
"Reporting company’s share of equity (%)"])
|
899 |
+
|
900 |
+
calculate_emissions_category_15_method_2(equity_investment_average_data)
|
901 |
+
|
902 |
+
def calculate_emissions_category_15_method_2(equity_investment_average_data):
|
903 |
+
total_emissions = sum([
|
904 |
+
(item["Investee company total revenue ($)"] * item["Emission factor for investee’s sector (kg CO2e/$ revenue)"]) *
|
905 |
+
(item["Reporting company’s share of equity (%)"] / 100)
|
906 |
+
for item in equity_investment_average_data
|
907 |
+
])
|
908 |
+
st.header(f"Total CO2e Emissions from Investments (Method 2): {total_emissions} tonnes CO2e")
|
909 |
+
|
910 |
+
def get_input_category_15_method_3():
|
911 |
+
st.subheader("Category 15: Investments - Method 3: Project-specific method for project finance and debt investments")
|
912 |
+
|
913 |
+
project_finance_data = dynamic_input_fields("Project Finance",
|
914 |
+
["Scope 1 and scope 2 emissions of relevant project (tonnes CO2e)",
|
915 |
+
"Value of debt investment ($)", "Total project costs (total equity plus debt) ($)",
|
916 |
+
"Share of total project costs (%)"],
|
917 |
+
["Scope 1 and scope 2 emissions of relevant project (tonnes CO2e)",
|
918 |
+
"Value of debt investment ($)", "Total project costs (total equity plus debt) ($)",
|
919 |
+
"Share of total project costs (%)"])
|
920 |
+
|
921 |
+
calculate_emissions_category_15_method_3(project_finance_data)
|
922 |
+
|
923 |
+
def calculate_emissions_category_15_method_3(project_finance_data):
|
924 |
+
total_emissions = sum([
|
925 |
+
item["Scope 1 and scope 2 emissions of relevant project (tonnes CO2e)"] *
|
926 |
+
(item["Share of total project costs (%)"] / 100)
|
927 |
+
for item in project_finance_data
|
928 |
+
])
|
929 |
+
st.header(f"Total CO2e Emissions from Investments (Method 3): {total_emissions} tonnes CO2e")
|
930 |
+
|
931 |
+
def get_input_category_15_method_4():
|
932 |
+
st.subheader("Category 15: Investments - Method 4: Average-data method for project finance and debt investments")
|
933 |
+
|
934 |
+
project_finance_average_data = dynamic_input_fields("Project Finance Average Data",
|
935 |
+
["Project construction cost or project revenue in reporting year ($ million)",
|
936 |
+
"Emission factor of relevant construction or operating sector (kg CO2e/$ revenue)",
|
937 |
+
"Share of total project costs (value of debt investment / total equity plus debt) (%)"],
|
938 |
+
["Project construction cost or project revenue in reporting year ($ million)",
|
939 |
+
"Emission factor of relevant construction or operating sector (kg CO2e/$ revenue)",
|
940 |
+
"Share of total project costs (value of debt investment / total equity plus debt) (%)"])
|
941 |
+
|
942 |
+
calculate_emissions_category_15_method_4(project_finance_average_data)
|
943 |
+
|
944 |
+
def calculate_emissions_category_15_method_4(project_finance_average_data):
|
945 |
+
total_emissions = sum([
|
946 |
+
((item["Project construction cost or project revenue in reporting year ($ million)"] *
|
947 |
+
item["Emission factor of relevant construction or operating sector (kg CO2e/$ revenue)"]) *
|
948 |
+
item["Share of total project costs (value of debt investment / total equity plus debt) (%)"] / 100)
|
949 |
+
for item in project_finance_average_data
|
950 |
+
])
|
951 |
+
st.header(f"Total CO2e Emissions from Investments (Method 4): {total_emissions} tonnes CO2e")
|
952 |
|
953 |
def main():
|
954 |
st.title("CO2 Emission Calculator")
|
955 |
+
selected_category = st.selectbox("Select Category", categories)
|
956 |
+
|
957 |
+
if selected_category in ["Category 1", "Category 2"]:
|
958 |
+
method_options = ["Supplier Specific Method", "Hybrid Method", "HybridPro Method"]
|
959 |
+
method = st.selectbox("Select Method", method_options)
|
960 |
+
|
961 |
+
if method == "Supplier Specific Method":
|
962 |
+
st.header("Supplier Specific Method")
|
963 |
+
num_items = st.number_input("Number of items", min_value=1, step=1)
|
964 |
+
purchased_goods_data = []
|
965 |
+
for i in range(num_items):
|
966 |
+
goods = st.selectbox(f"Purchased Goods {i + 1}", purchased_goods_values, key=f"goods_{i}")
|
967 |
+
supplier = st.selectbox(f"Supplier {i + 1}", supplier_values, key=f"supplier_{i}")
|
968 |
+
qty = st.number_input(f"Qty Purchased (kg) {i + 1}", min_value=0.0, step=0.01, key=f"qty_{i}")
|
969 |
+
emission_factor = st.number_input(f"Supplier-specific Emission Factor (kg CO2e/kg) {i + 1}", min_value=0.0, step=0.01, key=f"emission_factor_{i}")
|
970 |
+
purchased_goods_data.append((goods, supplier, qty, emission_factor))
|
971 |
+
calculate_emissions_supplier_specific(purchased_goods_data)
|
972 |
+
|
973 |
+
elif method == "Hybrid Method":
|
974 |
+
st.header("Hybrid Method")
|
975 |
+
scope1_and_scope2_data = dynamic_input_fields_with_dropdown("Scope 1 and Scope 2 data from supplier B relating to production of purchased goods", "Enter scope 1 and scope 2 data", scope_values, ["Category","Amount (kWh)", "Emission factor (kg CO2e/kWh)"])
|
976 |
+
material_inputs_data = dynamic_input_fields_with_dropdown("Material inputs of purchased goods", "Enter material input data", material_inputs_values, ["Purchased Goods", "Mass purchased (kg)", "Emission factor (kg CO2e/kg)"])
|
977 |
+
transport_data = dynamic_input_fields_with_dropdown("Transport of material inputs to supplier B", "Enter transport data", transport_values, ["Purchased Goods", "Distance of transport (km)", "Vehicle type emission factor (kg CO2e/kg/km)"])
|
978 |
+
waste_output_data = dynamic_input_fields_with_emission_factor("Waste outputs by supplier B relating to production of purchased goods", "Enter waste output data", waste_output_values, ["Amount (kg)", "Emission factor (kg CO2e/kg of waste sent to landfill)"])
|
979 |
+
calculate_emissions_hybrid(scope1_and_scope2_data, material_inputs_data, transport_data, waste_output_data)
|
980 |
+
|
981 |
+
elif method == "HybridPro Method":
|
982 |
+
scope_data = dynamic_input_fields_with_dropdown("Scope 1 and Scope 2 data from supplier B", "Enter scope data", scope_values, ["Category","Amount (kWh)", "Emission factor (kg CO2e/kWh)"])
|
983 |
+
tshirt_data = dynamic_input_fields_with_emission_factor("T-shirts", "Enter T-shirt data", purchased_goods_values,
|
984 |
+
["Number of t-shirts purchased",
|
985 |
+
"Cradle-to-gate process emission factor (kg CO2e/per t-shirt)","Cradle-to-gate process emission factor (kg CO2e/per t-shirt(excluding scopes)"])
|
986 |
+
waste_output_data = dynamic_input_fields_with_emission_factor("Waste outputs by supplier B", "Enter waste output data", waste_output_values,
|
987 |
+
["Amount (kg)", "Emission factor (kg CO2e/kg of waste sent to landfill)"])
|
988 |
+
calculate_emissions_hybrid_pro(tshirt_data, scope_data, waste_output_data)
|
989 |
+
|
990 |
+
elif selected_category=="Category 3":
|
991 |
+
collect_category_3_data()
|
992 |
+
|
993 |
+
elif selected_category == "Category 4":
|
994 |
+
method_options = ["Method 1: Fuel-based Method", "Method 2: Unladen Backhaul", "Method 3: Transportation", "Method 4: Distribution", "Method 5: Distribution"]
|
995 |
+
selected_method = st.selectbox("Select Method for Category 4", method_options)
|
996 |
+
|
997 |
+
if selected_method == "Method 1: Fuel-based Method":
|
998 |
+
collect_category_4_method_1_data()
|
999 |
+
elif selected_method == "Method 2: Unladen Backhaul":
|
1000 |
+
collect_category_4_method_2_data()
|
1001 |
+
elif selected_method == "Method 3: Transportation":
|
1002 |
+
collect_category_4_method_3_data()
|
1003 |
+
elif selected_method == "Method 4: Distribution":
|
1004 |
+
collect_category_4_method_4_data()
|
1005 |
+
elif selected_method == "Method 5: Distribution":
|
1006 |
+
collect_category_4_method_5_data()
|
1007 |
+
|
1008 |
+
elif selected_category == "Category 5":
|
1009 |
+
method_options = ["Method 1: Waste Operations using scope", "Method 2: Waste operations using produce", "Method 3: Average Method"]
|
1010 |
+
selected_method = st.selectbox("Select Method for Category 5", method_options)
|
1011 |
+
|
1012 |
+
if selected_method == "Method 1: Waste Operations using scope":
|
1013 |
+
get_input_category_5_method_1()
|
1014 |
+
elif selected_method == "Method 2: Waste operations using produce":
|
1015 |
+
get_input_category_5_method_2()
|
1016 |
+
elif selected_method == "Method 3: Average Method":
|
1017 |
+
get_input_category_5_method_3()
|
1018 |
+
|
1019 |
+
elif selected_category == "Category 6":
|
1020 |
+
get_input_category_6_method_1()
|
1021 |
+
|
1022 |
+
elif selected_category == "Category 7":
|
1023 |
+
method_options = ["Method 1: Standard method", "Method 2: Average Method"]
|
1024 |
+
selected_method = st.selectbox("Select Method for Category 7", method_options)
|
1025 |
+
if selected_method == "Method 1: Standard method":
|
1026 |
+
get_input_category_7_method_1()
|
1027 |
+
elif selected_method == "Method 2: Average Method":
|
1028 |
+
get_input_category_7_method_2()
|
1029 |
+
|
1030 |
+
elif selected_category == "Category 8":
|
1031 |
+
method_options = ["Method 1: Asset specific", "Method 2: Leased assets", "Method 3: Average method for leased assets","Method 4: Average method for leased buildings"]
|
1032 |
+
selected_method = st.selectbox("Select Method for Category 8", method_options)
|
1033 |
+
|
1034 |
+
if selected_method == "Method 1: Asset specific":
|
1035 |
+
get_input_category_8_method_1()
|
1036 |
+
elif selected_method == "Method 2: Leased assets":
|
1037 |
+
get_input_category_8_method_2()
|
1038 |
+
elif selected_method == "Method 3: Average method for leased assets":
|
1039 |
+
get_input_category_8_method_3()
|
1040 |
+
elif selected_method == "Method 4: Average method for leased buildings":
|
1041 |
+
get_input_category_8_method_4()
|
1042 |
+
|
1043 |
+
elif selected_category == "Category 9":
|
1044 |
+
get_input_category_9_method_1()
|
1045 |
+
|
1046 |
+
elif selected_category == "Category 10":
|
1047 |
+
method_options = ["Method 1: Site-specific", "Method 2: Average specific"]
|
1048 |
+
selected_method = st.selectbox("Select Method for Category 10", method_options)
|
1049 |
+
|
1050 |
+
if selected_method == "Method 1: Site-specific":
|
1051 |
+
get_input_category_10_method_1()
|
1052 |
+
elif selected_method == "Method 2: Average specific":
|
1053 |
+
get_input_category_10_method_2()
|
1054 |
+
|
1055 |
+
elif selected_category == "Category 11":
|
1056 |
+
method_options = ["Method 1: Direct energy consumption", "Method 2: Combusted Fuels", "Method 3: Greenhouse gases","Method 4: Indirect use","Method 5: Sold-intermediate products"]
|
1057 |
+
selected_method = st.selectbox("Select Method for Category 11", method_options)
|
1058 |
|
1059 |
+
if selected_method == "Method 1: Direct energy consumption":
|
1060 |
+
get_input_category_11_method_1()
|
1061 |
+
elif selected_method == "Method 2: Combusted Fuels":
|
1062 |
+
get_input_category_11_method_2()
|
1063 |
+
elif selected_method == "Method 3: Greenhouse gases":
|
1064 |
+
get_input_category_11_method_3()
|
1065 |
+
elif selected_method == "Method 4: Indirect use":
|
1066 |
+
get_input_category_11_method_4()
|
1067 |
+
else:
|
1068 |
+
get_input_category_11_method_5()
|
1069 |
+
|
1070 |
+
elif selected_category == "Category 12":
|
1071 |
+
get_input_category_12_method_1()
|
1072 |
+
|
1073 |
+
elif selected_category == "Category 13":
|
1074 |
+
get_input_category_13()
|
1075 |
+
|
1076 |
+
elif selected_category == "Category 14":
|
1077 |
+
method_options = ["Method 1: Franchise-specific", "Method 2: Allocating emissions from franchise buildings that are not sub-metered", "Method 3: Extrapolating emissions from sample groups","Method 4: Average data method for leased buildings (if floor space data is available)","Method 5: Average data method for other asset types or for leased buildings where floor space data is not available"]
|
1078 |
+
selected_method = st.selectbox("Select Method for Category 14", method_options)
|
1079 |
+
|
1080 |
+
if selected_method == "Method 1: Franchise-specific":
|
1081 |
+
get_input_category_14_method_1()
|
1082 |
+
elif selected_method == "Method 2: Allocating emissions from franchise buildings that are not sub-metered":
|
1083 |
+
get_input_category_14_method_2()
|
1084 |
+
elif selected_method == "Method 3: Extrapolating emissions from sample groups":
|
1085 |
+
get_input_category_14_method_3()
|
1086 |
+
elif selected_method == "Method 4: Average data method for leased buildings (if floor space data is available)":
|
1087 |
+
get_input_category_14_method_4()
|
1088 |
+
else:
|
1089 |
+
get_input_category_14_method_5()
|
1090 |
+
|
1091 |
+
else:
|
1092 |
+
method_options = ["Method 1: Investment-specific method for calculating emissions from equity investments", "Method 2: Average data method ", "Method 3: Project-specific method for calculating emissions from project finance and debt investments with known use of proceeds","Method 4: Average-data method for calculating emissions from project finance and debt investments with known use of proceeds"]
|
1093 |
+
selected_method = st.selectbox("Select Method for Category 14", method_options)
|
1094 |
+
|
1095 |
+
if selected_method == "Method 1: Investment-specific method for calculating emissions from equity investments":
|
1096 |
+
get_input_category_15_method_1()
|
1097 |
+
elif selected_method == "Method 2: Average data method ":
|
1098 |
+
get_input_category_15_method_2()
|
1099 |
+
elif selected_method == "Method 3: Project-specific method for calculating emissions from project finance and debt investments with known use of proceeds":
|
1100 |
+
get_input_category_15_method_3()
|
1101 |
+
elif selected_method == "Method 4: Average-data method for calculating emissions from project finance and debt investments with known use of proceeds":
|
1102 |
+
get_input_category_15_method_4()
|
1103 |
+
|
1104 |
+
def dynamic_input_fields(label, values, headings, country=None):
|
1105 |
num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
|
1106 |
input_fields = []
|
1107 |
+
|
1108 |
for i in range(num_items):
|
1109 |
st.subheader(f"{label} {i + 1}")
|
1110 |
input_data = {}
|
1111 |
+
|
1112 |
+
if country:
|
1113 |
+
input_data["Country"] = country
|
1114 |
+
|
1115 |
for value, heading in zip(values, headings):
|
1116 |
+
key = f"{label}_{i}_{value}_{heading}"
|
1117 |
+
input_data[value] = st.number_input(f"{heading} {i + 1}", min_value=0.0, step=0.01, key=key)
|
1118 |
+
|
1119 |
input_fields.append(input_data)
|
1120 |
+
|
1121 |
return input_fields
|
1122 |
|
1123 |
def dynamic_input_fields_with_dropdown(label, prompt, values, headings):
|
|
|
1143 |
input_fields.append(input_data)
|
1144 |
return input_fields
|
1145 |
|
1146 |
+
def dynamic_input_fields_with_dropdown_int(label, prompt, values, headings):
|
1147 |
+
num_items = st.number_input(f"**Number of {label} items**", min_value=1, step=1, key=f"{label}_num_items")
|
1148 |
+
input_fields = []
|
1149 |
+
|
1150 |
+
dropdown_options = {
|
1151 |
+
"Location": ["US", "Aus"],
|
1152 |
+
"Car_type": ["Hybrid", "Gasoline", "4 wheel"],
|
1153 |
+
|
1154 |
+
}
|
1155 |
+
|
1156 |
+
for i in range(num_items):
|
1157 |
+
st.subheader(f"{label} {i + 1}")
|
1158 |
+
input_data = {}
|
1159 |
+
|
1160 |
+
for j, heading in enumerate(headings):
|
1161 |
+
if heading in dropdown_options:
|
1162 |
+
input_data[heading] = st.selectbox(f"{heading} {i + 1}", dropdown_options[heading], key=f"{label}_{i}_{heading}")
|
1163 |
+
else:
|
1164 |
+
input_data[heading] = st.number_input(f"{heading} {i + 1}", min_value=0, step=1, key=f"{label}_{i}_{heading}")
|
1165 |
+
|
1166 |
+
input_fields.append(input_data)
|
1167 |
+
|
1168 |
+
return input_fields
|
1169 |
+
|
1170 |
+
|
1171 |
+
|
1172 |
if __name__ == "__main__":
|
1173 |
main()
|