Spaces:
Running
on
Zero
Running
on
Zero
import base64 | |
import json | |
from datetime import datetime | |
import gradio as gr | |
import torch | |
import spaces | |
from PIL import Image, ImageDraw | |
from qwen_vl_utils import process_vision_info | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
import ast | |
import os | |
from datetime import datetime | |
import numpy as np | |
from huggingface_hub import hf_hub_download, list_repo_files | |
# Define constants | |
DESCRIPTION = "[ShowUI Demo](https://huggingface.co./showlab/ShowUI-2B)" | |
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
MIN_PIXELS = 256 * 28 * 28 | |
MAX_PIXELS = 1344 * 28 * 28 | |
# Specify the model repository and destination folder | |
model_repo = "showlab/ShowUI-2B" | |
destination_folder = "./showui-2b" | |
# Ensure the destination folder exists | |
os.makedirs(destination_folder, exist_ok=True) | |
# List all files in the repository | |
files = list_repo_files(repo_id=model_repo) | |
# Download each file to the destination folder | |
for file in files: | |
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder) | |
print(f"Downloaded {file} to {file_path}") | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"./showui-2b", | |
# "showlab/ShowUI-2B", | |
torch_dtype=torch.bfloat16, | |
device_map="cpu", | |
) | |
# Load the processor | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS) | |
# Helper functions | |
def draw_point(image_input, point=None, radius=5): | |
"""Draw a point on the image.""" | |
if isinstance(image_input, str): | |
image = Image.open(image_input) | |
else: | |
image = Image.fromarray(np.uint8(image_input)) | |
if point: | |
x, y = point[0] * image.width, point[1] * image.height | |
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
return image | |
def array_to_image_path(image_array): | |
"""Save the uploaded image and return its path.""" | |
if image_array is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
img = Image.fromarray(np.uint8(image_array)) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
img.save(filename) | |
return os.path.abspath(filename) | |
def run_showui(image, query): | |
"""Main function for inference.""" | |
image_path = array_to_image_path(image) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": _SYSTEM}, | |
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS}, | |
{"type": "text", "text": query} | |
], | |
} | |
] | |
# Prepare inputs for the model | |
global model | |
model = model.to("cuda") | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
inputs = inputs.to("cuda") | |
# Generate output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Parse the output into coordinates | |
click_xy = ast.literal_eval(output_text) | |
# Draw the point on the image | |
result_image = draw_point(image_path, click_xy, radius=10) | |
return result_image, str(click_xy) | |
# Function to record votes | |
def record_vote(vote_type, image_path, query, action_generated): | |
"""Record a vote in a JSON file.""" | |
vote_data = { | |
"vote_type": vote_type, | |
"image_path": image_path, | |
"query": query, | |
"action_generated": action_generated, | |
"timestamp": datetime.now().isoformat() | |
} | |
with open("votes.json", "a") as f: | |
f.write(json.dumps(vote_data) + "\n") | |
return f"Your {vote_type} has been recorded. Thank you!" | |
# Helper function to handle vote recording | |
def handle_vote(vote_type, image_path, query, action_generated): | |
"""Handle vote recording by using the consistent image path.""" | |
if image_path is None: | |
return "No image uploaded. Please upload an image before voting." | |
return record_vote(vote_type, image_path, query, action_generated) | |
# Load logo and encode to Base64 | |
with open("./assets/showui.png", "rb") as image_file: | |
base64_image = base64.b64encode(image_file.read()).decode("utf-8") | |
# Define layout and UI | |
def build_demo(embed_mode, concurrency_count=1): | |
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo: | |
# State to store the consistent image path | |
state_image_path = gr.State(value=None) | |
if not embed_mode: | |
gr.HTML( | |
f""" | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<!-- Image --> | |
<div style="display: flex; justify-content: center;"> | |
<img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/> | |
</div> | |
<!-- Description --> | |
<p>ShowUI is a lightweight vision-language-action model for GUI agents.</p> | |
<!-- Links --> | |
<div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;"> | |
<a href="https://huggingface.co./showlab/ShowUI-2B" target="_blank"> | |
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/> | |
</a> | |
<a href="https://arxiv.org/abs/2411.17465" target="_blank"> | |
<img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/> | |
</a> | |
<a href="https://github.com/showlab/ShowUI" target="_blank"> | |
<img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/> | |
</a> | |
</div> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
# Input components | |
imagebox = gr.Image(type="numpy", label="Input Screenshot") | |
textbox = gr.Textbox( | |
show_label=True, | |
placeholder="Enter a query (e.g., 'Click Nahant')", | |
label="Query", | |
) | |
submit_btn = gr.Button(value="Submit", variant="primary") | |
# Placeholder examples | |
gr.Examples( | |
examples=[ | |
["./examples/safari_google.png", "Click on search bar."], | |
["./examples/apple_music.png", "Click on star."], | |
], | |
inputs=[imagebox, textbox], | |
examples_per_page=2 | |
) | |
with gr.Column(scale=8): | |
# Output components | |
output_img = gr.Image(type="pil", label="Output Image") | |
# Add a note below the image to explain the red point | |
gr.Markdown( | |
""" | |
**Note:** The red point on the output image represents the predicted clickable coordinates. | |
""" | |
) | |
output_coords = gr.Textbox(label="Clickable Coordinates") | |
# Buttons for voting, flagging, regenerating, and clearing | |
with gr.Row(elem_id="action-buttons", equal_height=True): | |
vote_btn = gr.Button(value="π Vote", variant="secondary") | |
downvote_btn = gr.Button(value="π Downvote", variant="secondary") | |
flag_btn = gr.Button(value="π© Flag", variant="secondary") | |
regenerate_btn = gr.Button(value="π Regenerate", variant="secondary") | |
clear_btn = gr.Button(value="ποΈ Clear", interactive=True) # Combined Clear button | |
# Define button actions | |
def on_submit(image, query): | |
"""Handle the submit button click.""" | |
if image is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
# Generate consistent image path and store it in the state | |
image_path = array_to_image_path(image) | |
return run_showui(image, query) + (image_path,) | |
submit_btn.click( | |
on_submit, | |
[imagebox, textbox], | |
[output_img, output_coords, state_image_path], | |
) | |
clear_btn.click( | |
lambda: (None, None, None, None, None), | |
inputs=None, | |
outputs=[imagebox, textbox, output_img, output_coords, state_image_path], # Clear all outputs | |
queue=False | |
) | |
regenerate_btn.click( | |
lambda image, query, state_image_path: run_showui(image, query), | |
[imagebox, textbox, state_image_path], | |
[output_img, output_coords], | |
) | |
# Record vote actions without feedback messages | |
vote_btn.click( | |
lambda image_path, query, action_generated: handle_vote( | |
"upvote", image_path, query, action_generated | |
), | |
inputs=[state_image_path, textbox, output_coords], | |
outputs=[], | |
queue=False | |
) | |
downvote_btn.click( | |
lambda image_path, query, action_generated: handle_vote( | |
"downvote", image_path, query, action_generated | |
), | |
inputs=[state_image_path, textbox, output_coords], | |
outputs=[], | |
queue=False | |
) | |
flag_btn.click( | |
lambda image_path, query, action_generated: handle_vote( | |
"flag", image_path, query, action_generated | |
), | |
inputs=[state_image_path, textbox, output_coords], | |
outputs=[], | |
queue=False | |
) | |
return demo | |
# Launch the app | |
if __name__ == "__main__": | |
demo = build_demo(embed_mode=False) | |
demo.queue(api_open=False).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
debug=True | |
) |