ShowUI / app.py
h-siyuan's picture
Update app.py
e6faf36 verified
raw
history blame
11 kB
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
from datetime import datetime
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files
# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co./showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28
# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"
# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)
# List all files in the repository
files = list_repo_files(repo_id=model_repo)
# Download each file to the destination folder
for file in files:
file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
print(f"Downloaded {file} to {file_path}")
model = Qwen2VLForConditionalGeneration.from_pretrained(
"./showui-2b",
# "showlab/ShowUI-2B",
torch_dtype=torch.bfloat16,
device_map="cpu",
)
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)
# Helper functions
def draw_point(image_input, point=None, radius=5):
"""Draw a point on the image."""
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
return image
def array_to_image_path(image_array):
"""Save the uploaded image and return its path."""
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
return os.path.abspath(filename)
@spaces.GPU
def run_showui(image, query):
"""Main function for inference."""
image_path = array_to_image_path(image)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
{"type": "text", "text": query}
],
}
]
# Prepare inputs for the model
global model
model = model.to("cuda")
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cuda")
# Generate output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
# Parse the output into coordinates
click_xy = ast.literal_eval(output_text)
# Draw the point on the image
result_image = draw_point(image_path, click_xy, radius=10)
return result_image, str(click_xy)
# Function to record votes
def record_vote(vote_type, image_path, query, action_generated):
"""Record a vote in a JSON file."""
vote_data = {
"vote_type": vote_type,
"image_path": image_path,
"query": query,
"action_generated": action_generated,
"timestamp": datetime.now().isoformat()
}
with open("votes.json", "a") as f:
f.write(json.dumps(vote_data) + "\n")
return f"Your {vote_type} has been recorded. Thank you!"
# Helper function to handle vote recording
def handle_vote(vote_type, image_path, query, action_generated):
"""Handle vote recording by using the consistent image path."""
if image_path is None:
return "No image uploaded. Please upload an image before voting."
return record_vote(vote_type, image_path, query, action_generated)
# Load logo and encode to Base64
with open("./assets/showui.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
# Define layout and UI
def build_demo(embed_mode, concurrency_count=1):
with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
# State to store the consistent image path
state_image_path = gr.State(value=None)
if not embed_mode:
gr.HTML(
f"""
<div style="text-align: center; margin-bottom: 20px;">
<!-- Image -->
<div style="display: flex; justify-content: center;">
<img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
</div>
<!-- Description -->
<p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
<!-- Links -->
<div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
<a href="https://huggingface.co./showlab/ShowUI-2B" target="_blank">
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
</a>
<a href="https://arxiv.org/abs/2411.17465" target="_blank">
<img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
</a>
<a href="https://github.com/showlab/ShowUI" target="_blank">
<img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
</a>
</div>
</div>
"""
)
with gr.Row():
with gr.Column(scale=3):
# Input components
imagebox = gr.Image(type="numpy", label="Input Screenshot")
textbox = gr.Textbox(
show_label=True,
placeholder="Enter a query (e.g., 'Click Nahant')",
label="Query",
)
submit_btn = gr.Button(value="Submit", variant="primary")
# Placeholder examples
gr.Examples(
examples=[
["./examples/safari_google.png", "Click on search bar."],
["./examples/apple_music.png", "Click on star."],
],
inputs=[imagebox, textbox],
examples_per_page=2
)
with gr.Column(scale=8):
# Output components
output_img = gr.Image(type="pil", label="Output Image")
# Add a note below the image to explain the red point
gr.Markdown(
"""
**Note:** The red point on the output image represents the predicted clickable coordinates.
"""
)
output_coords = gr.Textbox(label="Clickable Coordinates")
# Buttons for voting, flagging, regenerating, and clearing
with gr.Row(elem_id="action-buttons", equal_height=True):
vote_btn = gr.Button(value="πŸ‘ Vote", variant="secondary")
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", variant="secondary")
flag_btn = gr.Button(value="🚩 Flag", variant="secondary")
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", variant="secondary")
clear_btn = gr.Button(value="πŸ—‘οΈ Clear", interactive=True) # Combined Clear button
# Define button actions
def on_submit(image, query):
"""Handle the submit button click."""
if image is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Generate consistent image path and store it in the state
image_path = array_to_image_path(image)
return run_showui(image, query) + (image_path,)
submit_btn.click(
on_submit,
[imagebox, textbox],
[output_img, output_coords, state_image_path],
)
clear_btn.click(
lambda: (None, None, None, None, None),
inputs=None,
outputs=[imagebox, textbox, output_img, output_coords, state_image_path], # Clear all outputs
queue=False
)
regenerate_btn.click(
lambda image, query, state_image_path: run_showui(image, query),
[imagebox, textbox, state_image_path],
[output_img, output_coords],
)
# Record vote actions without feedback messages
vote_btn.click(
lambda image_path, query, action_generated: handle_vote(
"upvote", image_path, query, action_generated
),
inputs=[state_image_path, textbox, output_coords],
outputs=[],
queue=False
)
downvote_btn.click(
lambda image_path, query, action_generated: handle_vote(
"downvote", image_path, query, action_generated
),
inputs=[state_image_path, textbox, output_coords],
outputs=[],
queue=False
)
flag_btn.click(
lambda image_path, query, action_generated: handle_vote(
"flag", image_path, query, action_generated
),
inputs=[state_image_path, textbox, output_coords],
outputs=[],
queue=False
)
return demo
# Launch the app
if __name__ == "__main__":
demo = build_demo(embed_mode=False)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True
)