File size: 10,998 Bytes
0469e08
 
 
 
 
ff98ab7
0469e08
 
 
 
 
 
 
aeda90f
0469e08
 
d31c2af
0469e08
 
 
 
2c8e1ad
 
 
aeda90f
2c8e1ad
 
aeda90f
2c8e1ad
 
aeda90f
2c8e1ad
 
 
 
32056ff
3b0c073
2c8e1ad
 
22ed136
 
 
32056ff
22ed136
3b0c073
b75ba06
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbd5b0
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ed136
b226556
246264b
22ed136
 
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d31c2af
0469e08
 
 
 
 
 
86c315e
 
a898c1e
 
 
86c315e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6faf36
 
 
 
 
 
0469e08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e42fc
 
78d77f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import base64
import json
from datetime import datetime
import gradio as gr
import torch
import spaces
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
from datetime import datetime
import numpy as np
from huggingface_hub import hf_hub_download, list_repo_files

# Define constants
DESCRIPTION = "[ShowUI Demo](https://huggingface.co./showlab/ShowUI-2B)"
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
MIN_PIXELS = 256 * 28 * 28
MAX_PIXELS = 1344 * 28 * 28

# Specify the model repository and destination folder
model_repo = "showlab/ShowUI-2B"
destination_folder = "./showui-2b"

# Ensure the destination folder exists
os.makedirs(destination_folder, exist_ok=True)

# List all files in the repository
files = list_repo_files(repo_id=model_repo)

# Download each file to the destination folder
for file in files:
    file_path = hf_hub_download(repo_id=model_repo, filename=file, local_dir=destination_folder)
    print(f"Downloaded {file} to {file_path}")

model = Qwen2VLForConditionalGeneration.from_pretrained(
    "./showui-2b",
    # "showlab/ShowUI-2B",
    torch_dtype=torch.bfloat16,
    device_map="cpu",
)

# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=MIN_PIXELS, max_pixels=MAX_PIXELS)

# Helper functions
def draw_point(image_input, point=None, radius=5):
    """Draw a point on the image."""
    if isinstance(image_input, str):
        image = Image.open(image_input)
    else:
        image = Image.fromarray(np.uint8(image_input))

    if point:
        x, y = point[0] * image.width, point[1] * image.height
        ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
    return image

def array_to_image_path(image_array):
    """Save the uploaded image and return its path."""
    if image_array is None:
        raise ValueError("No image provided. Please upload an image before submitting.")
    img = Image.fromarray(np.uint8(image_array))
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    img.save(filename)
    return os.path.abspath(filename)

@spaces.GPU
def run_showui(image, query):
    """Main function for inference."""
    image_path = array_to_image_path(image)

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": _SYSTEM},
                {"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
                {"type": "text", "text": query}
            ],
        }
    ]

    # Prepare inputs for the model

    global model

    model = model.to("cuda")
    
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt"
    )
    inputs = inputs.to("cuda")

    # Generate output
    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]

    # Parse the output into coordinates
    click_xy = ast.literal_eval(output_text)

    # Draw the point on the image
    result_image = draw_point(image_path, click_xy, radius=10)
    return result_image, str(click_xy)

# Function to record votes
def record_vote(vote_type, image_path, query, action_generated):
    """Record a vote in a JSON file."""
    vote_data = {
        "vote_type": vote_type,
        "image_path": image_path,
        "query": query,
        "action_generated": action_generated,
        "timestamp": datetime.now().isoformat()
    }
    with open("votes.json", "a") as f:
        f.write(json.dumps(vote_data) + "\n")
    return f"Your {vote_type} has been recorded. Thank you!"

# Helper function to handle vote recording
def handle_vote(vote_type, image_path, query, action_generated):
    """Handle vote recording by using the consistent image path."""
    if image_path is None:
        return "No image uploaded. Please upload an image before voting."
    return record_vote(vote_type, image_path, query, action_generated)

# Load logo and encode to Base64
with open("./assets/showui.png", "rb") as image_file:
    base64_image = base64.b64encode(image_file.read()).decode("utf-8")


# Define layout and UI
def build_demo(embed_mode, concurrency_count=1):
    with gr.Blocks(title="ShowUI Demo", theme=gr.themes.Default()) as demo:
        # State to store the consistent image path
        state_image_path = gr.State(value=None)

        if not embed_mode:
            gr.HTML(
                f"""
                <div style="text-align: center; margin-bottom: 20px;">
                    <!-- Image -->
                    <div style="display: flex; justify-content: center;">
                        <img src="data:image/png;base64,{base64_image}" alt="ShowUI" width="320" style="margin-bottom: 10px;"/>
                    </div>
            
                    <!-- Description -->
                    <p>ShowUI is a lightweight vision-language-action model for GUI agents.</p>
            
                    <!-- Links -->
                    <div style="display: flex; justify-content: center; gap: 15px; font-size: 20px;">
                        <a href="https://huggingface.co./showlab/ShowUI-2B" target="_blank">
                            <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ShowUI--2B-blue" alt="model"/>
                        </a>
                        <a href="https://arxiv.org/abs/2411.17465" target="_blank">
                            <img src="https://img.shields.io/badge/arXiv%20paper-2411.17465-b31b1b.svg" alt="arXiv"/>
                        </a>
                        <a href="https://github.com/showlab/ShowUI" target="_blank">
                            <img src="https://img.shields.io/badge/GitHub-ShowUI-black" alt="GitHub"/>
                        </a>
                    </div>
                </div>
                """
            )

        with gr.Row():
            with gr.Column(scale=3):
                # Input components
                imagebox = gr.Image(type="numpy", label="Input Screenshot")
                textbox = gr.Textbox(
                    show_label=True,
                    placeholder="Enter a query (e.g., 'Click Nahant')",
                    label="Query",
                )
                submit_btn = gr.Button(value="Submit", variant="primary")

                # Placeholder examples
                gr.Examples(
                    examples=[
                        ["./examples/safari_google.png", "Click on search bar."],
                        ["./examples/apple_music.png", "Click on star."],
                    ],
                    inputs=[imagebox, textbox],
                    examples_per_page=2
                )

            with gr.Column(scale=8):
                # Output components
                output_img = gr.Image(type="pil", label="Output Image")
                # Add a note below the image to explain the red point
                gr.Markdown(
                    """
                    **Note:** The red point on the output image represents the predicted clickable coordinates.
                    """
                )
                output_coords = gr.Textbox(label="Clickable Coordinates")

                # Buttons for voting, flagging, regenerating, and clearing
                with gr.Row(elem_id="action-buttons", equal_height=True):
                    vote_btn = gr.Button(value="πŸ‘ Vote", variant="secondary")
                    downvote_btn = gr.Button(value="πŸ‘Ž Downvote", variant="secondary")
                    flag_btn = gr.Button(value="🚩 Flag", variant="secondary")
                    regenerate_btn = gr.Button(value="πŸ”„ Regenerate", variant="secondary")
                    clear_btn = gr.Button(value="πŸ—‘οΈ Clear", interactive=True)  # Combined Clear button

            # Define button actions
            def on_submit(image, query):
                """Handle the submit button click."""
                if image is None:
                    raise ValueError("No image provided. Please upload an image before submitting.")
                
                # Generate consistent image path and store it in the state
                image_path = array_to_image_path(image)
                return run_showui(image, query) + (image_path,)

            submit_btn.click(
                on_submit,
                [imagebox, textbox],
                [output_img, output_coords, state_image_path],
            )

            clear_btn.click(
                lambda: (None, None, None, None, None),
                inputs=None,
                outputs=[imagebox, textbox, output_img, output_coords, state_image_path],  # Clear all outputs
                queue=False
            )

            regenerate_btn.click(
                lambda image, query, state_image_path: run_showui(image, query),
                [imagebox, textbox, state_image_path],
                [output_img, output_coords],
            )

            # Record vote actions without feedback messages
            vote_btn.click(
                lambda image_path, query, action_generated: handle_vote(
                    "upvote", image_path, query, action_generated
                ),
                inputs=[state_image_path, textbox, output_coords],
                outputs=[],
                queue=False
            )

            downvote_btn.click(
                lambda image_path, query, action_generated: handle_vote(
                    "downvote", image_path, query, action_generated
                ),
                inputs=[state_image_path, textbox, output_coords],
                outputs=[],
                queue=False
            )

            flag_btn.click(
                lambda image_path, query, action_generated: handle_vote(
                    "flag", image_path, query, action_generated
                ),
                inputs=[state_image_path, textbox, output_coords],
                outputs=[],
                queue=False
            )

    return demo
# Launch the app
if __name__ == "__main__":
    demo = build_demo(embed_mode=False)
    demo.queue(api_open=False).launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True
    )