Spaces:
Build error
Build error
import dataclasses | |
from enum import auto, Enum | |
from typing import List, Tuple | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
MPT = auto() | |
PLAIN = auto() | |
LLAMA_2 = auto() | |
class VCoderConversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
sep_style: SeparatorStyle = SeparatorStyle.SINGLE | |
sep: str = "###" | |
sep2: str = None | |
version: str = "Unknown" | |
skip_next: bool = False | |
def get_prompt(self): | |
messages = self.messages | |
if self.sep_style == SeparatorStyle.SINGLE: | |
ret = self.system + self.sep | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, _, _, _, _, _, _ = message | |
ret += role + ": " + message + self.sep | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _, _, _, _, _ = message | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.MPT: | |
ret = self.system + self.sep | |
for role, message in messages: | |
if message: | |
if type(message) is tuple: | |
message, _, _, _, _, _, _ = message | |
ret += role + message + self.sep | |
else: | |
ret += role | |
elif self.sep_style == SeparatorStyle.LLAMA_2: | |
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" | |
wrap_inst = lambda msg: f"[INST] {msg} [/INST]" | |
ret = "" | |
for i, (role, message) in enumerate(messages): | |
if i == 0: | |
assert message, "first message should not be none" | |
assert role == self.roles[0], "first message should come from user" | |
if message: | |
if type(message) is tuple: | |
message, _, _, _, _, _, _ = message | |
if i == 0: message = wrap_sys(self.system) + message | |
if i % 2 == 0: | |
message = wrap_inst(message) | |
ret += self.sep + message | |
else: | |
ret += " " + message + " " + self.sep2 | |
else: | |
ret += "" | |
ret = ret.lstrip(self.sep) | |
elif self.sep_style == SeparatorStyle.PLAIN: | |
seps = [self.sep, self.sep2] | |
ret = self.system | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _, _, _, _, _ = message | |
ret += message + seps[i % 2] | |
else: | |
ret += "" | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
return ret | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def get_images(self, return_pil=False): | |
images = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
msg, image, image_process_mode, _, _, _, _ = msg | |
if image is not None: | |
if image_process_mode == "Pad": | |
def expand2square(pil_img, background_color=(122, 116, 104)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image) | |
elif image_process_mode in ["Default", "Crop"]: | |
pass | |
elif image_process_mode == "Resize": | |
image = image.resize((336, 336)) | |
else: | |
raise ValueError(f"Invalid image_process_mode: {image_process_mode}") | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if longest_edge != max(image.size): | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
if return_pil: | |
images.append(image) | |
else: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
images.append(img_b64_str) | |
return images | |
def get_segs(self, return_pil=False): | |
segs = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
msg, _, _, seg, seg_process_mode, _, _ = msg | |
if seg is not None: | |
if seg_process_mode == "Pad": | |
def expand2square(pil_img, background_color=(122, 116, 104)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
seg = expand2square(seg) | |
elif seg_process_mode in ["Default", "Crop"]: | |
pass | |
elif seg_process_mode == "Resize": | |
seg = seg.resize((336, 336)) | |
else: | |
raise ValueError(f"Invalid image_process_mode: {seg_process_mode}") | |
max_hw, min_hw = max(seg.size), min(seg.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = seg.size | |
if longest_edge != max(seg.size): | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
seg = seg.resize((W, H)) | |
if return_pil: | |
segs.append(seg) | |
else: | |
buffered = BytesIO() | |
seg.save(buffered, format="PNG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
segs.append(img_b64_str) | |
return segs | |
def get_depths(self, return_pil=False): | |
depths = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
msg, _, _, _, _, depth, depth_process_mode = msg | |
if depth is not None: | |
if depth_process_mode == "Pad": | |
def expand2square(pil_img, background_color=(122, 116, 104)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
depth = expand2square(depth) | |
elif depth_process_mode in ["Default", "Crop"]: | |
pass | |
elif depth_process_mode == "Resize": | |
depth = depth.resize((336, 336)) | |
else: | |
raise ValueError(f"Invalid image_process_mode: {depth_process_mode}") | |
max_hw, min_hw = max(depth.size), min(depth.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = depth.size | |
if longest_edge != max(depth.size): | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
depth = depth.resize((W, H)) | |
if return_pil: | |
depths.append(depth) | |
else: | |
buffered = BytesIO() | |
depth.save(buffered, format="PNG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
depths.append(img_b64_str) | |
return depths | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset:]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
msg, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode = msg | |
if image is not None: | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
msg = img_str + msg.replace('<image>', '').strip() | |
if seg is not None: | |
W, H = seg.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
seg = seg.resize((W, H)) | |
seg_buffered = BytesIO() | |
seg.save(seg_buffered, format="JPEG") | |
seg_b64_str = base64.b64encode(seg_buffered.getvalue()).decode() | |
seg_str = f'<img src="data:image/png;base64,{seg_b64_str}" alt="user upload seg" />' | |
msg = seg_str + msg.replace('<seg>', '').strip() | |
if depth is not None: | |
W, H = depth.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
depth = depth.resize((W, H)) | |
depth_buffered = BytesIO() | |
depth.save(depth_buffered, format="JPEG") | |
depth_b64_str = base64.b64encode(depth_buffered.getvalue()).decode() | |
depth_str = f'<img src="data:image/png;base64,{depth_b64_str}" alt="user upload depth" />' | |
msg = depth_str + msg.replace('<depth>', '').strip() | |
ret.append([msg, None]) | |
else: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return VCoderConversation( | |
system=self.system, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
version=self.version) | |
def dict(self): | |
if len(self.get_images()) > 0: | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
conv_vicuna_v1 = VCoderConversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="v1", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_llava_v1 = VCoderConversation( | |
system="A chat between a curious human and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the human's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="v1", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
default_conversation = conv_vicuna_v1 | |
conv_templates = { | |
"v1": conv_vicuna_v1, | |
"vicuna_v1": conv_vicuna_v1, | |
"llava_v1": conv_llava_v1, | |
} | |
if __name__ == "__main__": | |
print(default_conversation.get_prompt()) | |