File size: 16,834 Bytes
d3cee44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import dataclasses
from enum import auto, Enum
from typing import List, Tuple


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()
    PLAIN = auto()
    LLAMA_2 = auto()


@dataclasses.dataclass
class VCoderConversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None
    version: str = "Unknown"

    skip_next: bool = False

    def get_prompt(self):
        messages = self.messages
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep
            for role, message in messages:
                if message:
                    if type(message) is tuple:
                        message, _, _, _, _, _, _ = message
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(messages):
                if message:
                    if type(message) is tuple:
                        message, _, _, _, _, _, _ = message
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
        elif self.sep_style == SeparatorStyle.MPT:
            ret = self.system + self.sep
            for role, message in messages:
                if message:
                    if type(message) is tuple:
                        message, _, _, _, _, _, _ = message
                    ret += role + message + self.sep
                else:
                    ret += role
        elif self.sep_style == SeparatorStyle.LLAMA_2:
            wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
            wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
            ret = ""

            for i, (role, message) in enumerate(messages):
                if i == 0:
                    assert message, "first message should not be none"
                    assert role == self.roles[0], "first message should come from user"
                if message:
                    if type(message) is tuple:
                        message, _, _, _, _, _, _ = message
                    if i == 0: message = wrap_sys(self.system) + message
                    if i % 2 == 0:
                        message = wrap_inst(message)
                        ret += self.sep + message
                    else:
                        ret += " " + message + " " + self.sep2
                else:
                    ret += ""
            ret = ret.lstrip(self.sep)
        elif self.sep_style == SeparatorStyle.PLAIN:
            seps = [self.sep, self.sep2]
            ret = self.system
            for i, (role, message) in enumerate(messages):
                if message:
                    if type(message) is tuple:
                        message, _, _, _, _, _, _ = message
                    ret += message + seps[i % 2]
                else:
                    ret += ""
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

        return ret

    def append_message(self, role, message):
        self.messages.append([role, message])
    
    def get_images(self, return_pil=False):
        images = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    from PIL import Image
                    msg, image, image_process_mode, _, _, _, _ = msg
                    if image is not None:
                        if image_process_mode == "Pad":
                            def expand2square(pil_img, background_color=(122, 116, 104)):
                                width, height = pil_img.size
                                if width == height:
                                    return pil_img
                                elif width > height:
                                    result = Image.new(pil_img.mode, (width, width), background_color)
                                    result.paste(pil_img, (0, (width - height) // 2))
                                    return result
                                else:
                                    result = Image.new(pil_img.mode, (height, height), background_color)
                                    result.paste(pil_img, ((height - width) // 2, 0))
                                    return result
                            image = expand2square(image)
                        elif image_process_mode in ["Default", "Crop"]:
                            pass
                        elif image_process_mode == "Resize":
                            image = image.resize((336, 336))
                        else:
                            raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
                        max_hw, min_hw = max(image.size), min(image.size)
                        aspect_ratio = max_hw / min_hw
                        max_len, min_len = 800, 400
                        shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                        longest_edge = int(shortest_edge * aspect_ratio)
                        W, H = image.size
                        if longest_edge != max(image.size):
                            if H > W:
                                H, W = longest_edge, shortest_edge
                            else:
                                H, W = shortest_edge, longest_edge
                            image = image.resize((W, H))
                        if return_pil:
                            images.append(image)
                        else:
                            buffered = BytesIO()
                            image.save(buffered, format="PNG")
                            img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                            images.append(img_b64_str)
        return images

    def get_segs(self, return_pil=False):
        segs = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    from PIL import Image
                    msg, _, _, seg, seg_process_mode, _, _ = msg
                    if seg is not None:
                        if seg_process_mode == "Pad":
                            def expand2square(pil_img, background_color=(122, 116, 104)):
                                width, height = pil_img.size
                                if width == height:
                                    return pil_img
                                elif width > height:
                                    result = Image.new(pil_img.mode, (width, width), background_color)
                                    result.paste(pil_img, (0, (width - height) // 2))
                                    return result
                                else:
                                    result = Image.new(pil_img.mode, (height, height), background_color)
                                    result.paste(pil_img, ((height - width) // 2, 0))
                                    return result
                            seg = expand2square(seg)
                        elif seg_process_mode in ["Default", "Crop"]:
                            pass
                        elif seg_process_mode == "Resize":
                            seg = seg.resize((336, 336))
                        else:
                            raise ValueError(f"Invalid image_process_mode: {seg_process_mode}")
                        max_hw, min_hw = max(seg.size), min(seg.size)
                        aspect_ratio = max_hw / min_hw
                        max_len, min_len = 800, 400
                        shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                        longest_edge = int(shortest_edge * aspect_ratio)
                        W, H = seg.size
                        if longest_edge != max(seg.size):
                            if H > W:
                                H, W = longest_edge, shortest_edge
                            else:
                                H, W = shortest_edge, longest_edge
                            seg = seg.resize((W, H))
                        if return_pil:
                            segs.append(seg)
                        else:
                            buffered = BytesIO()
                            seg.save(buffered, format="PNG")
                            img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                            segs.append(img_b64_str)
        return segs
    
    def get_depths(self, return_pil=False):
        depths = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    from PIL import Image
                    msg, _, _, _, _, depth, depth_process_mode = msg
                    if depth is not None:
                        if depth_process_mode == "Pad":
                            def expand2square(pil_img, background_color=(122, 116, 104)):
                                width, height = pil_img.size
                                if width == height:
                                    return pil_img
                                elif width > height:
                                    result = Image.new(pil_img.mode, (width, width), background_color)
                                    result.paste(pil_img, (0, (width - height) // 2))
                                    return result
                                else:
                                    result = Image.new(pil_img.mode, (height, height), background_color)
                                    result.paste(pil_img, ((height - width) // 2, 0))
                                    return result
                            depth = expand2square(depth)
                        elif depth_process_mode in ["Default", "Crop"]:
                            pass
                        elif depth_process_mode == "Resize":
                            depth = depth.resize((336, 336))
                        else:
                            raise ValueError(f"Invalid image_process_mode: {depth_process_mode}")
                        max_hw, min_hw = max(depth.size), min(depth.size)
                        aspect_ratio = max_hw / min_hw
                        max_len, min_len = 800, 400
                        shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                        longest_edge = int(shortest_edge * aspect_ratio)
                        W, H = depth.size
                        if longest_edge != max(depth.size):
                            if H > W:
                                H, W = longest_edge, shortest_edge
                            else:
                                H, W = shortest_edge, longest_edge
                            depth = depth.resize((W, H))
                        if return_pil:
                            depths.append(depth)
                        else:
                            buffered = BytesIO()
                            depth.save(buffered, format="PNG")
                            img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                            depths.append(img_b64_str)
        return depths

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple:
                    import base64
                    from io import BytesIO
                    msg, image, image_process_mode, seg, seg_process_mode, depth, depth_process_mode = msg
                    if image is not None:
                        max_hw, min_hw = max(image.size), min(image.size)
                        aspect_ratio = max_hw / min_hw
                        max_len, min_len = 800, 400
                        shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                        longest_edge = int(shortest_edge * aspect_ratio)
                        W, H = image.size
                        if H > W:
                            H, W = longest_edge, shortest_edge
                        else:
                            H, W = shortest_edge, longest_edge
                        image = image.resize((W, H))
                        buffered = BytesIO()
                        image.save(buffered, format="JPEG")
                        img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                        img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
                        msg = img_str + msg.replace('<image>', '').strip()

                    if seg is not None:
                        W, H = seg.size
                        if H > W:
                            H, W = longest_edge, shortest_edge
                        else:
                            H, W = shortest_edge, longest_edge
                        seg = seg.resize((W, H))
                        seg_buffered = BytesIO()
                        seg.save(seg_buffered, format="JPEG")
                        seg_b64_str = base64.b64encode(seg_buffered.getvalue()).decode()
                        seg_str = f'<img src="data:image/png;base64,{seg_b64_str}" alt="user upload seg" />'
                        msg = seg_str + msg.replace('<seg>', '').strip()
                    
                    if depth is not None:
                        W, H = depth.size
                        if H > W:
                            H, W = longest_edge, shortest_edge
                        else:
                            H, W = shortest_edge, longest_edge
                        depth = depth.resize((W, H))
                        depth_buffered = BytesIO()
                        depth.save(depth_buffered, format="JPEG")
                        depth_b64_str = base64.b64encode(depth_buffered.getvalue()).decode()
                        depth_str = f'<img src="data:image/png;base64,{depth_b64_str}" alt="user upload depth" />'
                        msg = depth_str + msg.replace('<depth>', '').strip()
                    ret.append([msg, None])
                else:
                    ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return VCoderConversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            version=self.version)

    def dict(self):
        if len(self.get_images()) > 0:
            return {
                "system": self.system,
                "roles": self.roles,
                "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
                "offset": self.offset,
                "sep": self.sep,
                "sep2": self.sep2,
            }
        return {
            "system": self.system,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
        }


conv_vicuna_v1 = VCoderConversation(
    system="A chat between a curious user and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions.",
    roles=("USER", "ASSISTANT"),
    version="v1",
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.TWO,
    sep=" ",
    sep2="</s>",
)

conv_llava_v1 = VCoderConversation(
    system="A chat between a curious human and an artificial intelligence assistant. "
           "The assistant gives helpful, detailed, and polite answers to the human's questions.",
    roles=("USER", "ASSISTANT"),
    version="v1",
    messages=(),
    offset=0,
    sep_style=SeparatorStyle.TWO,
    sep=" ",
    sep2="</s>",
)


default_conversation = conv_vicuna_v1
conv_templates = {
    "v1": conv_vicuna_v1,
    "vicuna_v1": conv_vicuna_v1,
    "llava_v1": conv_llava_v1,
}


if __name__ == "__main__":
    print(default_conversation.get_prompt())