Spaces:
Running
on
Zero
Running
on
Zero
############################################################## | |
# copy from cognitron_vl/constants.py | |
############################################################## | |
import logging | |
logger = logging.getLogger(__name__) | |
if True: | |
IMG_TAG_TOKEN = "<image>" | |
VID_TAG_TOKEN = "<video>" | |
AUD_TAG_TOKEN = "<audio>" | |
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>' | |
IMG_START_TOKEN = '<img>' | |
IMG_END_TOKEN = '</img>' | |
VID_CONTEXT_TOKEN = '<VID_CONTEXT>' | |
VID_START_TOKEN = '<vid>' | |
VID_END_TOKEN = '</vid>' | |
PATCH_CONTEXT_TOKEN = '<PATCH_CONTEXT>' | |
PATCH_START_TOKEN = '<patch>' | |
PATCH_END_TOKEN = '</patch>' | |
AUD_START_TOKEN = '<|begin_of_audio|>' | |
AUD_END_TOKEN = '<|end_of_audio|>' | |
QUAD_START_TOKEN = '<quad>' | |
QUAD_END_TOKEN = '</quad>' | |
REF_START_TOKEN = '<ref>' | |
REF_END_TOKEN = '</ref>' | |
BOX_START_TOKEN = '<box>' | |
BOX_END_TOKEN = '</box>' | |
if False: | |
IMG_TAG_TOKEN = "<|image|>" | |
VID_TAG_TOKEN = "<|video|>" | |
AUD_TAG_TOKEN = "<|audio|>" | |
IMG_CONTEXT_TOKEN = '<|context_of_image|>' | |
IMG_START_TOKEN = '<|begin_of_image|>' | |
IMG_END_TOKEN = '<|end_of_image|>' | |
VID_CONTEXT_TOKEN = '<|context_of_video|>' | |
VID_START_TOKEN = '<|begin_of_video|>' | |
VID_END_TOKEN = '<|end_of_video|>' | |
PATCH_CONTEXT_TOKEN = '<|context_of_patch|>' | |
PATCH_START_TOKEN = '<|begin_of_patch|>' | |
PATCH_END_TOKEN = '<|end_of_patch|>' | |
AUD_START_TOKEN = '<|begin_of_audio|>' | |
AUD_END_TOKEN = '<|end_of_audio|>' | |
QUAD_START_TOKEN = '<|begin_of_quad|>' | |
QUAD_END_TOKEN = '<|end_of_quad|>' | |
REF_START_TOKEN = '<|begin_of_ref|>' | |
REF_END_TOKEN = '<|end_of_ref|>' | |
BOX_START_TOKEN = '<|begin_of_box|>' | |
BOX_END_TOKEN = '<|end_of_box|>' | |
logger.info(f"IMG_TAG_TOKEN {IMG_TAG_TOKEN}") | |
logger.info(f"VID_TAG_TOKEN {VID_TAG_TOKEN}") | |
logger.info(f"AUD_TAG_TOKEN {AUD_TAG_TOKEN}") | |
logger.info(f"IMG_CONTEXT_TOKEN {IMG_CONTEXT_TOKEN}") | |
logger.info(f"IMG_START_TOKEN {IMG_START_TOKEN}") | |
logger.info(f"IMG_END_TOKEN {IMG_END_TOKEN}") | |
logger.info(f"VID_CONTEXT_TOKEN {VID_CONTEXT_TOKEN}") | |
logger.info(f"VID_START_TOKEN {VID_START_TOKEN}") | |
logger.info(f"VID_END_TOKEN {VID_END_TOKEN}") | |
logger.info(f"PATCH_CONTEXT_TOKEN {PATCH_CONTEXT_TOKEN}") | |
logger.info(f"PATCH_START_TOKEN {PATCH_START_TOKEN}") | |
logger.info(f"PATCH_END_TOKEN {PATCH_END_TOKEN}") | |
logger.info(f"AUD_START_TOKEN {AUD_START_TOKEN}") | |
logger.info(f"AUD_END_TOKEN {AUD_END_TOKEN}") | |
# IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
# IMAGENET_STD = (0.229, 0.224, 0.225) | |
# CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073) | |
# CLIP_STD = (0.2686295, 0.2613025, 0.2757711) | |
# SIGLIP_MEAN = (0.5, 0.5, 0.5) | |
# SIGLIP_STD = (0.5, 0.5, 0.5) | |
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406] | |
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225] | |
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5] | |
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5] | |
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] | |
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711] | |
# Model Constants | |
IGNORE_INDEX = -100 | |
IMAGE_TOKEN_INDEX = -200 | |
DEFAULT_IMAGE_TOKEN = IMG_CONTEXT_TOKEN | |
DEFAULT_IMAGE_PATCH_TOKEN = PATCH_CONTEXT_TOKEN | |
DEFAULT_IM_START_TOKEN = IMG_START_TOKEN | |
DEFAULT_IM_END_TOKEN = IMG_END_TOKEN | |
############################################################## | |
############################################################## | |
# copy from cognitron_vl/data/processor/image_processor.py | |
############################################################## | |
import math | |
import os | |
import cv2 | |
import natsort | |
import numpy as np | |
import torch | |
from PIL import Image | |
import decord | |
# from cognitron_vl.constants import ( | |
# IMAGENET_DEFAULT_MEAN, | |
# IMAGENET_DEFAULT_STD, | |
# IMAGENET_STANDARD_MEAN, | |
# IMAGENET_STANDARD_STD, | |
# OPENAI_CLIP_MEAN, | |
# OPENAI_CLIP_STD, | |
# ) | |
class ImageProcessor: | |
def __init__( | |
self, | |
process_type, | |
image_size=448, | |
normalize_type="imagenet", | |
min_patch_grid=1, | |
max_patch_grid=6, | |
): | |
self.process_type = process_type | |
self.image_size = image_size | |
if normalize_type == "imagenet": | |
MEAN, STD = IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
elif normalize_type == "clip": | |
MEAN, STD = OPENAI_CLIP_MEAN, OPENAI_CLIP_STD | |
elif normalize_type == "siglip": | |
MEAN, STD = IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD | |
else: | |
raise NotImplementedError | |
self.mean = MEAN | |
self.std = STD | |
self.patch_size = image_size | |
self.min_patch_grid = min_patch_grid | |
self.max_patch_grid = max_patch_grid | |
if self.process_type == "anyres": | |
self.grid_pinpoints = [ | |
(i, j) | |
for i in range(min_patch_grid, max_patch_grid + 1) | |
for j in range(min_patch_grid, max_patch_grid + 1) | |
] | |
self.possible_resolutions = [ | |
[dim * self.patch_size for dim in pair] for pair in self.grid_pinpoints | |
] | |
print(f"grid_pinpoints {self.grid_pinpoints}") | |
print(f"possible_resolutions {self.possible_resolutions}") | |
if self.process_type == "dynamic": | |
max_num = self.max_patch_grid | |
min_num = self.min_patch_grid | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
self.target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
self.possible_resolutions = [ | |
[dim * self.patch_size for dim in pair] for pair in self.target_ratios | |
] | |
print(f"target_ratios {self.target_ratios}") | |
print(f"possible_resolutions {self.possible_resolutions}") | |
def get_frame_paths(self, frame_root, num_frames=8): | |
os.makedirs(frame_root, exist_ok=True) | |
self.frame_tmpl = "frame-{}-of-{}.jpg" | |
return [ | |
os.path.join(frame_root, self.frame_tmpl.format(i, num_frames)) | |
for i in range(1, num_frames + 1) | |
] | |
def save_video_frames(self, vid_path, max_fps=1, num_frames=8): | |
vid = decord.VideoReader(vid_path, num_threads=1) | |
step_size = len(vid) / (num_frames + 1) | |
# step_size = max(1, step_size) | |
fps = vid.get_avg_fps() | |
step_size = max(fps / max_fps, step_size) | |
# indices = [int(i * step_size) for i in range(1, num_frames + 1)] | |
indices = [int(i * step_size) for i in range(0, num_frames)] | |
indices = [i for i in indices if i < len(vid)] | |
num_frames = len(indices) | |
frame_paths = self.get_frame_paths(vid_path + ".saved_frames", num_frames) | |
flag = np.all([os.path.exists(p) for p in frame_paths]) | |
if flag: | |
return frame_paths | |
images = [vid[i].asnumpy() for i in indices] | |
images = [Image.fromarray(arr) for arr in images] | |
for im, pth in zip(images, frame_paths): | |
# if not os.path.exists(pth): | |
# im.save(pth) | |
im.save(pth) | |
# print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}") | |
return frame_paths | |
def get_video_frames(self, vid_path, max_fps=1, num_frames=8): | |
vid = decord.VideoReader(vid_path, num_threads=1) | |
step_size = len(vid) / (num_frames + 1) | |
# step_size = max(1, step_size) | |
fps = vid.get_avg_fps() | |
step_size = max(fps / max_fps, step_size) | |
# indices = [int(i * step_size) for i in range(1, num_frames + 1)] | |
indices = [int(i * step_size) for i in range(0, num_frames)] | |
indices = [i for i in indices if i < len(vid)] | |
images = [vid[i].asnumpy() for i in indices] | |
images = [Image.fromarray(arr) for arr in images] | |
# print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}") | |
return images | |
def process_video(self, video_file_or_dir, max_num_frame=8, max_fps=1): | |
if os.path.isdir(video_file_or_dir): | |
all_filepath = [] | |
for root, dirs, files in os.walk(video_file_or_dir): | |
for filename in files: | |
if ( | |
filename.endswith("png") | |
or filename.endswith("jpeg") | |
or filename.endswith("jpg") | |
): | |
filepath = os.path.join(root, filename) | |
all_filepath.append(filepath) | |
if len(all_filepath) == 0: | |
return None | |
# all_filepath.sort() | |
all_filepath = natsort.natsorted(all_filepath) | |
total_frame = len(all_filepath) | |
if "ShareGPTVideo" in video_file_or_dir: | |
fps = 2 | |
else: | |
fps = 1 | |
target_frame = int(min(total_frame / fps * max_fps, max_num_frame)) | |
index = [int(1.0 * total_frame / target_frame) * x for x in range(target_frame)] | |
selected_filepath = [all_filepath[x] for x in index] | |
img_or_path_list = selected_filepath | |
# print(f"process_video {img_or_path_list}") | |
elif os.path.isfile(video_file_or_dir): | |
# frame_paths = self.save_video_frames( | |
# video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps | |
# ) | |
# img_or_path_list = frame_paths | |
img_or_path_list = self.get_video_frames( | |
video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps | |
) | |
else: | |
# print(f"FileNotFoundError {video_file_or_dir}") | |
raise NotImplementedError | |
return self.process_images(img_or_path_list), img_or_path_list | |
def process_images(self, img_or_path_list): | |
if isinstance(img_or_path_list[0], str): | |
images = [Image.open(x).convert("RGB") for x in img_or_path_list] | |
elif isinstance(img_or_path_list[0], Image.Image): | |
images = [x.convert("RGB") for x in img_or_path_list] | |
else: | |
images = img_or_path_list | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image_tensor = torch.ones([len(images), 3, self.image_size, self.image_size]) | |
for i, image in enumerate(images): | |
image = expand2square(image, tuple(int(x * 255) for x in self.mean)) | |
image = image.resize( | |
(self.image_size, self.image_size), resample=Image.Resampling.BICUBIC | |
) | |
image = np.array(image, dtype=np.float32) | |
image = image * 1.0 / 255.0 | |
mean = np.array(self.mean, dtype=image.dtype) | |
std = np.array(self.std, dtype=image.dtype) | |
image = (image - mean) / std | |
image = torch.tensor(image, dtype=torch.float32) | |
image = image.permute(2, 0, 1) | |
image_tensor[i] = image | |
return image_tensor | |
def process_images_with_subpatch(self, img_or_path): | |
if self.process_type == "anyres": | |
return self.process_anyres(img_or_path) | |
if self.process_type == "dynamic": | |
return self.process_dynamic(img_or_path) | |
if isinstance(img_or_path, str): | |
image = Image.open(img_or_path).convert("RGB") | |
elif isinstance(img_or_path, Image.Image): | |
image = img_or_path.convert("RGB") | |
else: | |
image = img_or_path | |
return self.process_images([images]) | |
def process_anyres(self, img_or_path): | |
if isinstance(img_or_path, str): | |
image = Image.open(img_or_path).convert("RGB") | |
elif isinstance(img_or_path, Image.Image): | |
image = img_or_path.convert("RGB") | |
else: | |
image = img_or_path | |
best_resolution = select_best_resolution(image.size, self.possible_resolutions) | |
image_padded = resize_and_pad_image(image, best_resolution) | |
patches = divide_to_patches(image_padded, self.patch_size) | |
if best_resolution == (self.patch_size, self.patch_size): | |
image_patches = [image] | |
else: | |
image_patches = [image] + patches | |
image_patches = self.process_images(image_patches) | |
# print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}") | |
return image_patches, best_resolution | |
def process_dynamic(self, img_or_path): | |
if isinstance(img_or_path, str): | |
image = Image.open(img_or_path).convert("RGB") | |
elif isinstance(img_or_path, Image.Image): | |
image = img_or_path.convert("RGB") | |
else: | |
image = img_or_path | |
image_patches, best_resolution = dynamic_preprocess( | |
image, | |
min_num=self.min_patch_grid, | |
max_num=self.max_patch_grid, | |
image_size=self.patch_size, | |
use_thumbnail=True, | |
) | |
image_patches = self.process_images(image_patches) | |
# print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}") | |
return image_patches, best_resolution | |
def select_best_resolution(original_size, possible_resolutions): | |
""" | |
Selects the best resolution from a list of possible resolutions based on the original size. | |
Args: | |
original_size (tuple): The original size of the image in the format (width, height). | |
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. | |
Returns: | |
tuple: The best fit resolution in the format (width, height). | |
""" | |
original_width, original_height = original_size | |
best_fit = None | |
max_effective_resolution = 0 | |
min_wasted_resolution = float("inf") | |
for width, height in possible_resolutions: | |
# Calculate the downscaled size to keep the aspect ratio | |
scale = min(width / original_width, height / original_height) | |
downscaled_width, downscaled_height = int(original_width * scale), int( | |
original_height * scale | |
) | |
# Calculate effective and wasted resolutions | |
effective_resolution = min( | |
downscaled_width * downscaled_height, original_width * original_height | |
) | |
wasted_resolution = (width * height) - effective_resolution | |
if effective_resolution > max_effective_resolution or ( | |
effective_resolution == max_effective_resolution | |
and wasted_resolution < min_wasted_resolution | |
): | |
max_effective_resolution = effective_resolution | |
min_wasted_resolution = wasted_resolution | |
best_fit = (width, height) | |
return best_fit | |
def resize_and_pad_image(image, target_resolution): | |
""" | |
Resize and pad an image to a target resolution while maintaining aspect ratio. | |
Args: | |
image (PIL.Image.Image): The input image. | |
target_resolution (tuple): The target resolution (width, height) of the image. | |
Returns: | |
PIL.Image.Image: The resized and padded image. | |
""" | |
original_width, original_height = image.size | |
target_width, target_height = target_resolution | |
# Determine which dimension (width or height) to fill | |
scale_w = target_width / original_width | |
scale_h = target_height / original_height | |
if scale_w < scale_h: | |
# Width will be filled completely | |
new_width = target_width | |
new_height = min(math.ceil(original_height * scale_w), target_height) | |
else: | |
# Height will be filled completely | |
new_height = target_height | |
new_width = min(math.ceil(original_width * scale_h), target_width) | |
# Resize the image | |
resized_image = image.resize((new_width, new_height)) | |
# Create a new image with the target size and paste the resized image onto it | |
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) | |
paste_x = (target_width - new_width) // 2 | |
paste_y = (target_height - new_height) // 2 | |
new_image.paste(resized_image, (paste_x, paste_y)) | |
return new_image | |
def divide_to_patches(image, patch_size): | |
""" | |
Divides an image into patches of a specified size. | |
Args: | |
image (PIL.Image.Image): The input image. | |
patch_size (int): The size of each patch. | |
Returns: | |
list: A list of PIL.Image.Image objects representing the patches. | |
""" | |
patches = [] | |
width, height = image.size | |
for i in range(0, height, patch_size): | |
for j in range(0, width, patch_size): | |
box = (j, i, j + patch_size, i + patch_size) | |
patch = image.crop(box) | |
patches.append(patch) | |
return patches | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float("inf") | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}') | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size | |
) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
# processed_images.append(thumbnail_img) | |
processed_images = [ | |
thumbnail_img, | |
] + processed_images | |
return processed_images, (target_width, target_height) | |
############################################################## | |
############################################################## | |
# modify from long_vita_megatron/tasks/inference/module.py | |
############################################################## | |
def get_external_inputs(tokens, image_list=None, image_path_list=None, video_path_list=None): | |
print(f"get_external_inputs tokens {tokens.size()}") | |
tokens = tokens.tolist() | |
image_token_length = 256 | |
max_num_frame = 4096 | |
max_fps = 1 | |
# from cognitron_vl.constants import IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN, VID_START_TOKEN, VID_END_TOKEN, VID_CONTEXT_TOKEN, PATCH_START_TOKEN, PATCH_END_TOKEN, PATCH_CONTEXT_TOKEN, IMG_TAG_TOKEN, VID_TAG_TOKEN | |
image_tag = "<image>" | |
video_tag = "<video>" | |
IMG_CONTEXT_ID = tokenizer(IMG_CONTEXT_TOKEN, add_special_tokens=False).input_ids | |
IMG_START_ID = tokenizer(IMG_START_TOKEN, add_special_tokens=False).input_ids | |
IMG_END_ID = tokenizer(IMG_END_TOKEN, add_special_tokens=False).input_ids | |
VID_CONTEXT_ID = tokenizer(VID_CONTEXT_TOKEN, add_special_tokens=False).input_ids | |
VID_START_ID = tokenizer(VID_START_TOKEN, add_special_tokens=False).input_ids | |
VID_END_ID = tokenizer(VID_END_TOKEN, add_special_tokens=False).input_ids | |
PATCH_CONTEXT_ID = tokenizer(PATCH_CONTEXT_TOKEN, add_special_tokens=False).input_ids | |
PATCH_START_ID = tokenizer(PATCH_START_TOKEN, add_special_tokens=False).input_ids | |
PATCH_END_ID = tokenizer(PATCH_END_TOKEN, add_special_tokens=False).input_ids | |
IMG_TAG_ID = tokenizer(IMG_TAG_TOKEN, add_special_tokens=False).input_ids | |
VID_TAG_ID = tokenizer(VID_TAG_TOKEN, add_special_tokens=False).input_ids | |
assert len(IMG_CONTEXT_ID) == 1 | |
assert len(IMG_START_ID) == 1 | |
assert len(IMG_END_ID) == 1 | |
assert len(VID_CONTEXT_ID) == 1 | |
assert len(VID_START_ID) == 1 | |
assert len(VID_END_ID) == 1 | |
assert len(PATCH_CONTEXT_ID) == 1 | |
assert len(PATCH_START_ID) == 1 | |
assert len(PATCH_END_ID) == 1 | |
IMG_CONTEXT_ID = IMG_CONTEXT_ID[0] | |
IMG_START_ID = IMG_START_ID[0] | |
IMG_END_ID = IMG_END_ID[0] | |
VID_CONTEXT_ID = VID_CONTEXT_ID[0] | |
VID_START_ID = VID_START_ID[0] | |
VID_END_ID = VID_END_ID[0] | |
PATCH_CONTEXT_ID = PATCH_CONTEXT_ID[0] | |
PATCH_START_ID = PATCH_START_ID[0] | |
PATCH_END_ID = PATCH_END_ID[0] | |
IMG_TAG_ID = IMG_TAG_ID[0] | |
VID_TAG_ID = VID_TAG_ID[0] | |
nl_tokens = tokenizer("\n", add_special_tokens=False).input_ids | |
image_indices = [] | |
images = [] | |
# ---------------------------------------------------------------- | |
# image | |
for batch_idx, input_ids in enumerate(tokens): | |
# img_positions = [i for i, x in enumerate(input_ids) if x == IMG_CONTEXT_ID] | |
img_positions = [i for i, x in enumerate(input_ids) if x == IMG_TAG_ID] | |
if len(img_positions) == 0: | |
continue | |
if image_path_list is not None: | |
assert len(img_positions) == len(image_path_list), f"{img_positions} {image_path_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}" | |
if image_list is not None: | |
assert len(img_positions) == len(image_list), f"{img_positions} {image_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}" | |
new_input_ids = [] | |
st = 0 | |
for img_idx, img_pos in enumerate(img_positions): | |
if image_path_list is not None: | |
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_path_list[img_idx]) | |
if image_list is not None: | |
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_list[img_idx]) | |
images.append(image_patches) | |
print(f"get_external_inputs best_width {best_width} best_height {best_height}") | |
new_input_ids += input_ids[st:img_pos] | |
new_input_ids += [IMG_START_ID] | |
image_indice_b = torch.zeros( | |
1, image_token_length, dtype=torch.int64 | |
) # This will change in collate_fn | |
image_indice_s = ( | |
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length) | |
.unsqueeze(0) | |
.repeat(1, 1) | |
) | |
image_indice_b_s = torch.stack( | |
[image_indice_b, image_indice_s], dim=0 | |
) # 2, num_image, image_length | |
image_indices.append(image_indice_b_s) | |
new_input_ids += [IMG_CONTEXT_ID] * image_token_length | |
new_input_ids += [IMG_END_ID] | |
if len(image_patches) > 1: | |
for i in range(0, best_height, image_processor.patch_size): | |
new_input_ids += nl_tokens | |
for j in range(0, best_width, image_processor.patch_size): | |
new_input_ids += [PATCH_START_ID] | |
image_indice_b = torch.zeros( | |
1, image_token_length, dtype=torch.int64 | |
) # This will change in collate_fn | |
image_indice_s = ( | |
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length) | |
.unsqueeze(0) | |
.repeat(1, 1) | |
) | |
image_indice_b_s = torch.stack( | |
[image_indice_b, image_indice_s], dim=0 | |
) # 2, num_image, image_length | |
image_indices.append(image_indice_b_s) | |
new_input_ids += [PATCH_CONTEXT_ID] * image_token_length | |
new_input_ids += [PATCH_END_ID] | |
# print(f"get_external_dict i {i} j {j} new_input_ids {len(new_input_ids)}") | |
st = img_pos + 1 | |
new_input_ids += input_ids[st:] | |
input_ids = new_input_ids | |
tokens[batch_idx] = input_ids | |
# ---------------------------------------------------------------- | |
# video | |
for batch_idx, input_ids in enumerate(tokens): | |
# vid_positions = [i for i, x in enumerate(input_ids) if x == VID_CONTEXT_ID] | |
vid_positions = [i for i, x in enumerate(input_ids) if x == VID_TAG_ID] | |
if len(vid_positions) == 0: | |
continue | |
if video_path_list is not None: | |
assert len(vid_positions) == len(video_path_list), f"{vid_positions} {video_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}" | |
if image_path_list is not None: | |
assert len(vid_positions) == len(image_path_list), f"{vid_positions} {image_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}" | |
if image_list is not None: | |
assert len(vid_positions) == len(image_list), f"{vid_positions} {image_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}" | |
new_input_ids = [] | |
st = 0 | |
for vid_idx, vid_pos in enumerate(vid_positions): | |
if video_path_list is not None: | |
video_frames, _ = image_processor.process_video(video_path_list[vid_idx], max_num_frame, max_fps) | |
if image_path_list is not None: | |
video_frames = image_processor.process_images([image_path_list[vid_idx]]) | |
if image_list is not None: | |
video_frames = image_processor.process_images([image_list[vid_idx]]) | |
images.append(video_frames) | |
new_input_ids += input_ids[st:vid_pos] | |
for _ in video_frames: | |
new_input_ids += [VID_START_ID] | |
image_indice_b = torch.zeros( | |
1, image_token_length, dtype=torch.int64 | |
) # This will change in collate_fn | |
image_indice_s = ( | |
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length) | |
.unsqueeze(0) | |
.repeat(1, 1) | |
) | |
image_indice_b_s = torch.stack( | |
[image_indice_b, image_indice_s], dim=0 | |
) # 2, num_image, image_length | |
image_indices.append(image_indice_b_s) | |
new_input_ids += [VID_CONTEXT_ID] * image_token_length | |
new_input_ids += [VID_END_ID] | |
st = vid_pos + 1 | |
new_input_ids += input_ids[st:] | |
input_ids = new_input_ids | |
tokens[batch_idx] = input_ids | |
if len(images) > 0: | |
images = torch.cat(images, dim=0) | |
image_indices = torch.cat(image_indices, dim=1) | |
image_indices = image_indices.contiguous().to(torch.cuda.current_device()) | |
if True: | |
images = torch.tensor(images, dtype=torch.bfloat16).contiguous().to(torch.cuda.current_device()) | |
else: | |
images = torch.tensor(images, dtype=torch.float16).contiguous().to(torch.cuda.current_device()) | |
print(f"get_external_inputs images {images.size()}") | |
print(f"get_external_inputs image_indices {image_indices.size()}") | |
else: | |
images = None | |
image_indices = None | |
print(f"get_external_inputs images {images}") | |
print(f"get_external_inputs image_indices {image_indices}") | |
tokens = torch.tensor(tokens, dtype=torch.long, device='cuda') | |
print(f"get_external_inputs tokens {tokens.size()}") | |
return tokens, images, image_indices | |
############################################################## | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
import torch | |
import importlib | |
if importlib.util.find_spec("torch_npu") is not None: | |
print("Loading torch_npu") | |
import torch_npu | |
from torch_npu.contrib import transfer_to_npu | |
# torch.npu.set_compile_mode(jit_compile=True) | |
import sys | |
import os | |
import natsort | |
torch.manual_seed(1234) | |
model_name_or_path = "VITA-MLLM/Long-VITA-128K_HF" | |
device_map = "auto" | |
# device_map = "npu:0" | |
# torch_dtype=torch.float16 | |
torch_dtype=torch.bfloat16 | |
# torch_dtype=torch.float32 | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name_or_path, | |
trust_remote_code=True | |
) | |
print("tokenizer", tokenizer) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, | |
trust_remote_code=True, | |
device_map=device_map, | |
torch_dtype=torch_dtype, | |
attn_implementation="flash_attention_2", | |
).eval() | |
# print("model", model) | |
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path, trust_remote_code=True) | |
model.generation_config.max_new_tokens = 1024 | |
model.generation_config.chat_format = "chatml" | |
model.generation_config.max_window_size = 1310720 | |
model.generation_config.do_sample = False | |
model.generation_config.use_cache = True | |
model.generation_config.pad_token_id = tokenizer.pad_token_id | |
# from cognitron_vl.data.processor.image_processor import ImageProcessor | |
image_processor = ImageProcessor( | |
process_type="dynamic", | |
image_size=448, | |
normalize_type="imagenet", | |
min_patch_grid=1, | |
max_patch_grid=12, | |
) | |
import gradio as gr | |
import spaces | |
def inference_model(messages, image_path_list, video_path_list): | |
default_system_message = [ | |
{ | |
"role": "system", | |
"content": "You are a helpful AI assistant.", | |
} | |
] | |
messages = default_system_message + messages | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt", | |
) | |
# .to("cuda") | |
print("input", tokenizer.decode(inputs[0], skip_special_tokens=False), flush=True) | |
inputs, images, image_indices = get_external_inputs(inputs, image_path_list=image_path_list, video_path_list=video_path_list) | |
# inputs = inputs.to("cuda") | |
# images = images.to("cuda") | |
# image_indices = image_indices.to("cuda") | |
outputs = model.generate(inputs=inputs, images=images, image_indices=image_indices) | |
# output = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) | |
print(f"output {output}", flush=True) | |
return output | |
import time | |
import filetype | |
font_size = "2.5em" | |
html = f""" | |
<p align="center" style="font-size: {font_size}; line-height: 1;"> | |
<span style="display: inline-block; vertical-align: middle;">{model_name_or_path.split('/')[-1]}</span> | |
</p> | |
<center> | |
<font size=3> | |
<b>Long-VITA</b> has been fully open-sourced on <a href='https://huggingface.co./VITA-MLLM'>😊 Huggingface</a> and <a href='https://github.com/VITA-MLLM/Long-VITA'>🌟 GitHub</a>. If you find Long-VITA useful, a like❤️ or a star🌟 would be appreciated. | |
</font> | |
</center> | |
""" | |
def add_message(history, message): | |
for x in message["files"]: | |
history.append({"role": "user", "content": {"path": x}}) | |
if message["text"] is not None: | |
history.append({"role": "user", "content": message["text"]}) | |
return history, gr.MultimodalTextbox(value=None, interactive=False) | |
def bot(history: list): | |
print("#" * 100) | |
messages = [] | |
image_path_list = [] | |
video_path_list = [] | |
for message in history: | |
# print(f"message {message}") | |
role = message["role"] | |
content = message["content"] | |
if isinstance(content, str): | |
if len(messages) == 0 or messages[-1]["role"] != role: | |
messages.append( | |
{ | |
"role": role, | |
"content": "", | |
} | |
) | |
messages[-1]["content"] = messages[-1]["content"] + content | |
else: | |
for filepath in content: | |
if filetype.is_image(filepath): | |
# print(f"{filepath} is a valid image...") | |
if len(messages) == 0 or messages[-1]["role"] != role: | |
messages.append( | |
{ | |
"role": role, | |
"content": "", | |
} | |
) | |
messages[-1]["content"] = "<image>" + messages[-1]["content"] | |
image_path_list.append(filepath) | |
elif filetype.is_video(filepath): | |
# print(f"{filepath} is a valid video...") | |
if len(messages) == 0 or messages[-1]["role"] != role: | |
messages.append( | |
{ | |
"role": role, | |
"content": "", | |
} | |
) | |
messages[-1]["content"] = "<video>" + messages[-1]["content"] | |
video_path_list.append(filepath) | |
print(f"messages {messages}") | |
print(f"image_path_list {image_path_list}") | |
print(f"video_path_list {video_path_list}") | |
if len(image_path_list) == 0: | |
image_path_list = None | |
if len(video_path_list) == 0: | |
video_path_list = None | |
output = inference_model(messages, image_path_list, video_path_list) | |
history.append({"role": "assistant", "content": output}) | |
return history | |
with gr.Blocks(title=model_name_or_path.split('/')[-1] + "🔥🚀🔥", theme=gr.themes.Ocean()) as demo: | |
gr.HTML(html) | |
with gr.Row(): | |
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", bubble_full_width=False, height=800) | |
with gr.Row(): | |
chat_input = gr.MultimodalTextbox( | |
interactive=True, | |
file_count="multiple", | |
file_types=['image', 'video'], | |
placeholder="Enter message or upload file...", | |
show_label=False, | |
# sources=["microphone", "upload"], | |
sources=["upload"], | |
) | |
chat_msg = chat_input.submit( | |
add_message, [chatbot, chat_input], [chatbot, chat_input] | |
) | |
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") | |
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) | |
demo.launch( | |
server_port=8501, | |
server_name="0.0.0.0", | |
) | |