Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1002 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
##############################################################
|
11 |
+
# copy from cognitron_vl/constants.py
|
12 |
+
##############################################################
|
13 |
+
import logging
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
if True:
|
18 |
+
IMG_TAG_TOKEN = "<image>"
|
19 |
+
VID_TAG_TOKEN = "<video>"
|
20 |
+
AUD_TAG_TOKEN = "<audio>"
|
21 |
+
|
22 |
+
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
|
23 |
+
IMG_START_TOKEN = '<img>'
|
24 |
+
IMG_END_TOKEN = '</img>'
|
25 |
+
|
26 |
+
VID_CONTEXT_TOKEN = '<VID_CONTEXT>'
|
27 |
+
VID_START_TOKEN = '<vid>'
|
28 |
+
VID_END_TOKEN = '</vid>'
|
29 |
+
|
30 |
+
PATCH_CONTEXT_TOKEN = '<PATCH_CONTEXT>'
|
31 |
+
PATCH_START_TOKEN = '<patch>'
|
32 |
+
PATCH_END_TOKEN = '</patch>'
|
33 |
+
|
34 |
+
AUD_START_TOKEN = '<|begin_of_audio|>'
|
35 |
+
AUD_END_TOKEN = '<|end_of_audio|>'
|
36 |
+
|
37 |
+
QUAD_START_TOKEN = '<quad>'
|
38 |
+
QUAD_END_TOKEN = '</quad>'
|
39 |
+
REF_START_TOKEN = '<ref>'
|
40 |
+
REF_END_TOKEN = '</ref>'
|
41 |
+
BOX_START_TOKEN = '<box>'
|
42 |
+
BOX_END_TOKEN = '</box>'
|
43 |
+
|
44 |
+
|
45 |
+
if False:
|
46 |
+
IMG_TAG_TOKEN = "<|image|>"
|
47 |
+
VID_TAG_TOKEN = "<|video|>"
|
48 |
+
AUD_TAG_TOKEN = "<|audio|>"
|
49 |
+
|
50 |
+
IMG_CONTEXT_TOKEN = '<|context_of_image|>'
|
51 |
+
IMG_START_TOKEN = '<|begin_of_image|>'
|
52 |
+
IMG_END_TOKEN = '<|end_of_image|>'
|
53 |
+
|
54 |
+
VID_CONTEXT_TOKEN = '<|context_of_video|>'
|
55 |
+
VID_START_TOKEN = '<|begin_of_video|>'
|
56 |
+
VID_END_TOKEN = '<|end_of_video|>'
|
57 |
+
|
58 |
+
PATCH_CONTEXT_TOKEN = '<|context_of_patch|>'
|
59 |
+
PATCH_START_TOKEN = '<|begin_of_patch|>'
|
60 |
+
PATCH_END_TOKEN = '<|end_of_patch|>'
|
61 |
+
|
62 |
+
AUD_START_TOKEN = '<|begin_of_audio|>'
|
63 |
+
AUD_END_TOKEN = '<|end_of_audio|>'
|
64 |
+
|
65 |
+
QUAD_START_TOKEN = '<|begin_of_quad|>'
|
66 |
+
QUAD_END_TOKEN = '<|end_of_quad|>'
|
67 |
+
REF_START_TOKEN = '<|begin_of_ref|>'
|
68 |
+
REF_END_TOKEN = '<|end_of_ref|>'
|
69 |
+
BOX_START_TOKEN = '<|begin_of_box|>'
|
70 |
+
BOX_END_TOKEN = '<|end_of_box|>'
|
71 |
+
|
72 |
+
logger.info(f"IMG_TAG_TOKEN {IMG_TAG_TOKEN}")
|
73 |
+
logger.info(f"VID_TAG_TOKEN {VID_TAG_TOKEN}")
|
74 |
+
logger.info(f"AUD_TAG_TOKEN {AUD_TAG_TOKEN}")
|
75 |
+
logger.info(f"IMG_CONTEXT_TOKEN {IMG_CONTEXT_TOKEN}")
|
76 |
+
logger.info(f"IMG_START_TOKEN {IMG_START_TOKEN}")
|
77 |
+
logger.info(f"IMG_END_TOKEN {IMG_END_TOKEN}")
|
78 |
+
logger.info(f"VID_CONTEXT_TOKEN {VID_CONTEXT_TOKEN}")
|
79 |
+
logger.info(f"VID_START_TOKEN {VID_START_TOKEN}")
|
80 |
+
logger.info(f"VID_END_TOKEN {VID_END_TOKEN}")
|
81 |
+
logger.info(f"PATCH_CONTEXT_TOKEN {PATCH_CONTEXT_TOKEN}")
|
82 |
+
logger.info(f"PATCH_START_TOKEN {PATCH_START_TOKEN}")
|
83 |
+
logger.info(f"PATCH_END_TOKEN {PATCH_END_TOKEN}")
|
84 |
+
logger.info(f"AUD_START_TOKEN {AUD_START_TOKEN}")
|
85 |
+
logger.info(f"AUD_END_TOKEN {AUD_END_TOKEN}")
|
86 |
+
|
87 |
+
# IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
88 |
+
# IMAGENET_STD = (0.229, 0.224, 0.225)
|
89 |
+
|
90 |
+
# CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073)
|
91 |
+
# CLIP_STD = (0.2686295, 0.2613025, 0.2757711)
|
92 |
+
|
93 |
+
# SIGLIP_MEAN = (0.5, 0.5, 0.5)
|
94 |
+
# SIGLIP_STD = (0.5, 0.5, 0.5)
|
95 |
+
|
96 |
+
|
97 |
+
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
|
98 |
+
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
|
99 |
+
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
|
100 |
+
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
|
101 |
+
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
|
102 |
+
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
# Model Constants
|
107 |
+
IGNORE_INDEX = -100
|
108 |
+
IMAGE_TOKEN_INDEX = -200
|
109 |
+
DEFAULT_IMAGE_TOKEN = IMG_CONTEXT_TOKEN
|
110 |
+
DEFAULT_IMAGE_PATCH_TOKEN = PATCH_CONTEXT_TOKEN
|
111 |
+
DEFAULT_IM_START_TOKEN = IMG_START_TOKEN
|
112 |
+
DEFAULT_IM_END_TOKEN = IMG_END_TOKEN
|
113 |
+
|
114 |
+
|
115 |
+
##############################################################
|
116 |
+
|
117 |
+
##############################################################
|
118 |
+
# copy from cognitron_vl/data/processor/image_processor.py
|
119 |
+
##############################################################
|
120 |
+
import math
|
121 |
+
import os
|
122 |
+
|
123 |
+
import cv2
|
124 |
+
import natsort
|
125 |
+
import numpy as np
|
126 |
+
import torch
|
127 |
+
from PIL import Image
|
128 |
+
|
129 |
+
import decord
|
130 |
+
# from cognitron_vl.constants import (
|
131 |
+
# IMAGENET_DEFAULT_MEAN,
|
132 |
+
# IMAGENET_DEFAULT_STD,
|
133 |
+
# IMAGENET_STANDARD_MEAN,
|
134 |
+
# IMAGENET_STANDARD_STD,
|
135 |
+
# OPENAI_CLIP_MEAN,
|
136 |
+
# OPENAI_CLIP_STD,
|
137 |
+
# )
|
138 |
+
|
139 |
+
|
140 |
+
class ImageProcessor:
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
process_type,
|
144 |
+
image_size=448,
|
145 |
+
normalize_type="imagenet",
|
146 |
+
min_patch_grid=1,
|
147 |
+
max_patch_grid=6,
|
148 |
+
):
|
149 |
+
self.process_type = process_type
|
150 |
+
self.image_size = image_size
|
151 |
+
|
152 |
+
if normalize_type == "imagenet":
|
153 |
+
MEAN, STD = IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
154 |
+
elif normalize_type == "clip":
|
155 |
+
MEAN, STD = OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
156 |
+
elif normalize_type == "siglip":
|
157 |
+
MEAN, STD = IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
|
158 |
+
else:
|
159 |
+
raise NotImplementedError
|
160 |
+
self.mean = MEAN
|
161 |
+
self.std = STD
|
162 |
+
|
163 |
+
self.patch_size = image_size
|
164 |
+
self.min_patch_grid = min_patch_grid
|
165 |
+
self.max_patch_grid = max_patch_grid
|
166 |
+
|
167 |
+
if self.process_type == "anyres":
|
168 |
+
self.grid_pinpoints = [
|
169 |
+
(i, j)
|
170 |
+
for i in range(min_patch_grid, max_patch_grid + 1)
|
171 |
+
for j in range(min_patch_grid, max_patch_grid + 1)
|
172 |
+
]
|
173 |
+
self.possible_resolutions = [
|
174 |
+
[dim * self.patch_size for dim in pair] for pair in self.grid_pinpoints
|
175 |
+
]
|
176 |
+
print(f"grid_pinpoints {self.grid_pinpoints}")
|
177 |
+
print(f"possible_resolutions {self.possible_resolutions}")
|
178 |
+
|
179 |
+
if self.process_type == "dynamic":
|
180 |
+
max_num = self.max_patch_grid
|
181 |
+
min_num = self.min_patch_grid
|
182 |
+
# calculate the existing image aspect ratio
|
183 |
+
target_ratios = set(
|
184 |
+
(i, j)
|
185 |
+
for n in range(min_num, max_num + 1)
|
186 |
+
for i in range(1, n + 1)
|
187 |
+
for j in range(1, n + 1)
|
188 |
+
if i * j <= max_num and i * j >= min_num
|
189 |
+
)
|
190 |
+
self.target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
191 |
+
self.possible_resolutions = [
|
192 |
+
[dim * self.patch_size for dim in pair] for pair in self.target_ratios
|
193 |
+
]
|
194 |
+
print(f"target_ratios {self.target_ratios}")
|
195 |
+
print(f"possible_resolutions {self.possible_resolutions}")
|
196 |
+
|
197 |
+
def get_frame_paths(self, frame_root, num_frames=8):
|
198 |
+
os.makedirs(frame_root, exist_ok=True)
|
199 |
+
|
200 |
+
self.frame_tmpl = "frame-{}-of-{}.jpg"
|
201 |
+
return [
|
202 |
+
os.path.join(frame_root, self.frame_tmpl.format(i, num_frames))
|
203 |
+
for i in range(1, num_frames + 1)
|
204 |
+
]
|
205 |
+
|
206 |
+
def save_video_frames(self, vid_path, max_fps=1, num_frames=8):
|
207 |
+
|
208 |
+
vid = decord.VideoReader(vid_path, num_threads=1)
|
209 |
+
|
210 |
+
step_size = len(vid) / (num_frames + 1)
|
211 |
+
# step_size = max(1, step_size)
|
212 |
+
fps = vid.get_avg_fps()
|
213 |
+
step_size = max(fps / max_fps, step_size)
|
214 |
+
|
215 |
+
# indices = [int(i * step_size) for i in range(1, num_frames + 1)]
|
216 |
+
indices = [int(i * step_size) for i in range(0, num_frames)]
|
217 |
+
indices = [i for i in indices if i < len(vid)]
|
218 |
+
|
219 |
+
num_frames = len(indices)
|
220 |
+
|
221 |
+
frame_paths = self.get_frame_paths(vid_path + ".saved_frames", num_frames)
|
222 |
+
flag = np.all([os.path.exists(p) for p in frame_paths])
|
223 |
+
if flag:
|
224 |
+
return frame_paths
|
225 |
+
|
226 |
+
images = [vid[i].asnumpy() for i in indices]
|
227 |
+
images = [Image.fromarray(arr) for arr in images]
|
228 |
+
|
229 |
+
for im, pth in zip(images, frame_paths):
|
230 |
+
# if not os.path.exists(pth):
|
231 |
+
# im.save(pth)
|
232 |
+
im.save(pth)
|
233 |
+
# print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}")
|
234 |
+
return frame_paths
|
235 |
+
|
236 |
+
def get_video_frames(self, vid_path, max_fps=1, num_frames=8):
|
237 |
+
|
238 |
+
vid = decord.VideoReader(vid_path, num_threads=1)
|
239 |
+
|
240 |
+
step_size = len(vid) / (num_frames + 1)
|
241 |
+
# step_size = max(1, step_size)
|
242 |
+
fps = vid.get_avg_fps()
|
243 |
+
step_size = max(fps / max_fps, step_size)
|
244 |
+
|
245 |
+
# indices = [int(i * step_size) for i in range(1, num_frames + 1)]
|
246 |
+
indices = [int(i * step_size) for i in range(0, num_frames)]
|
247 |
+
indices = [i for i in indices if i < len(vid)]
|
248 |
+
|
249 |
+
images = [vid[i].asnumpy() for i in indices]
|
250 |
+
images = [Image.fromarray(arr) for arr in images]
|
251 |
+
|
252 |
+
# print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}")
|
253 |
+
return images
|
254 |
+
|
255 |
+
def process_video(self, video_file_or_dir, max_num_frame=8, max_fps=1):
|
256 |
+
if os.path.isdir(video_file_or_dir):
|
257 |
+
all_filepath = []
|
258 |
+
for root, dirs, files in os.walk(video_file_or_dir):
|
259 |
+
for filename in files:
|
260 |
+
if (
|
261 |
+
filename.endswith("png")
|
262 |
+
or filename.endswith("jpeg")
|
263 |
+
or filename.endswith("jpg")
|
264 |
+
):
|
265 |
+
filepath = os.path.join(root, filename)
|
266 |
+
all_filepath.append(filepath)
|
267 |
+
|
268 |
+
if len(all_filepath) == 0:
|
269 |
+
return None
|
270 |
+
|
271 |
+
# all_filepath.sort()
|
272 |
+
all_filepath = natsort.natsorted(all_filepath)
|
273 |
+
total_frame = len(all_filepath)
|
274 |
+
if "ShareGPTVideo" in video_file_or_dir:
|
275 |
+
fps = 2
|
276 |
+
else:
|
277 |
+
fps = 1
|
278 |
+
target_frame = int(min(total_frame / fps * max_fps, max_num_frame))
|
279 |
+
index = [int(1.0 * total_frame / target_frame) * x for x in range(target_frame)]
|
280 |
+
|
281 |
+
selected_filepath = [all_filepath[x] for x in index]
|
282 |
+
|
283 |
+
img_or_path_list = selected_filepath
|
284 |
+
# print(f"process_video {img_or_path_list}")
|
285 |
+
elif os.path.isfile(video_file_or_dir):
|
286 |
+
# frame_paths = self.save_video_frames(
|
287 |
+
# video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps
|
288 |
+
# )
|
289 |
+
# img_or_path_list = frame_paths
|
290 |
+
img_or_path_list = self.get_video_frames(
|
291 |
+
video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
# print(f"FileNotFoundError {video_file_or_dir}")
|
295 |
+
raise NotImplementedError
|
296 |
+
|
297 |
+
return self.process_images(img_or_path_list), img_or_path_list
|
298 |
+
|
299 |
+
def process_images(self, img_or_path_list):
|
300 |
+
|
301 |
+
if isinstance(img_or_path_list[0], str):
|
302 |
+
images = [Image.open(x).convert("RGB") for x in img_or_path_list]
|
303 |
+
elif isinstance(img_or_path_list[0], Image.Image):
|
304 |
+
images = [x.convert("RGB") for x in img_or_path_list]
|
305 |
+
else:
|
306 |
+
images = img_or_path_list
|
307 |
+
|
308 |
+
def expand2square(pil_img, background_color):
|
309 |
+
width, height = pil_img.size
|
310 |
+
if width == height:
|
311 |
+
return pil_img
|
312 |
+
elif width > height:
|
313 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
314 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
315 |
+
return result
|
316 |
+
else:
|
317 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
318 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
319 |
+
return result
|
320 |
+
|
321 |
+
image_tensor = torch.ones([len(images), 3, self.image_size, self.image_size])
|
322 |
+
|
323 |
+
for i, image in enumerate(images):
|
324 |
+
image = expand2square(image, tuple(int(x * 255) for x in self.mean))
|
325 |
+
|
326 |
+
image = image.resize(
|
327 |
+
(self.image_size, self.image_size), resample=Image.Resampling.BICUBIC
|
328 |
+
)
|
329 |
+
|
330 |
+
image = np.array(image, dtype=np.float32)
|
331 |
+
image = image * 1.0 / 255.0
|
332 |
+
|
333 |
+
mean = np.array(self.mean, dtype=image.dtype)
|
334 |
+
std = np.array(self.std, dtype=image.dtype)
|
335 |
+
image = (image - mean) / std
|
336 |
+
|
337 |
+
image = torch.tensor(image, dtype=torch.float32)
|
338 |
+
image = image.permute(2, 0, 1)
|
339 |
+
|
340 |
+
image_tensor[i] = image
|
341 |
+
|
342 |
+
return image_tensor
|
343 |
+
|
344 |
+
def process_images_with_subpatch(self, img_or_path):
|
345 |
+
if self.process_type == "anyres":
|
346 |
+
return self.process_anyres(img_or_path)
|
347 |
+
if self.process_type == "dynamic":
|
348 |
+
return self.process_dynamic(img_or_path)
|
349 |
+
|
350 |
+
if isinstance(img_or_path, str):
|
351 |
+
image = Image.open(img_or_path).convert("RGB")
|
352 |
+
elif isinstance(img_or_path, Image.Image):
|
353 |
+
image = img_or_path.convert("RGB")
|
354 |
+
else:
|
355 |
+
image = img_or_path
|
356 |
+
|
357 |
+
return self.process_images([images])
|
358 |
+
|
359 |
+
def process_anyres(self, img_or_path):
|
360 |
+
if isinstance(img_or_path, str):
|
361 |
+
image = Image.open(img_or_path).convert("RGB")
|
362 |
+
elif isinstance(img_or_path, Image.Image):
|
363 |
+
image = img_or_path.convert("RGB")
|
364 |
+
else:
|
365 |
+
image = img_or_path
|
366 |
+
|
367 |
+
best_resolution = select_best_resolution(image.size, self.possible_resolutions)
|
368 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
369 |
+
patches = divide_to_patches(image_padded, self.patch_size)
|
370 |
+
|
371 |
+
if best_resolution == (self.patch_size, self.patch_size):
|
372 |
+
image_patches = [image]
|
373 |
+
else:
|
374 |
+
image_patches = [image] + patches
|
375 |
+
|
376 |
+
image_patches = self.process_images(image_patches)
|
377 |
+
|
378 |
+
# print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}")
|
379 |
+
|
380 |
+
return image_patches, best_resolution
|
381 |
+
|
382 |
+
def process_dynamic(self, img_or_path):
|
383 |
+
if isinstance(img_or_path, str):
|
384 |
+
image = Image.open(img_or_path).convert("RGB")
|
385 |
+
elif isinstance(img_or_path, Image.Image):
|
386 |
+
image = img_or_path.convert("RGB")
|
387 |
+
else:
|
388 |
+
image = img_or_path
|
389 |
+
|
390 |
+
image_patches, best_resolution = dynamic_preprocess(
|
391 |
+
image,
|
392 |
+
min_num=self.min_patch_grid,
|
393 |
+
max_num=self.max_patch_grid,
|
394 |
+
image_size=self.patch_size,
|
395 |
+
use_thumbnail=True,
|
396 |
+
)
|
397 |
+
|
398 |
+
image_patches = self.process_images(image_patches)
|
399 |
+
|
400 |
+
# print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}")
|
401 |
+
|
402 |
+
return image_patches, best_resolution
|
403 |
+
|
404 |
+
|
405 |
+
def select_best_resolution(original_size, possible_resolutions):
|
406 |
+
"""
|
407 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
408 |
+
|
409 |
+
Args:
|
410 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
411 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
tuple: The best fit resolution in the format (width, height).
|
415 |
+
"""
|
416 |
+
original_width, original_height = original_size
|
417 |
+
best_fit = None
|
418 |
+
max_effective_resolution = 0
|
419 |
+
min_wasted_resolution = float("inf")
|
420 |
+
|
421 |
+
for width, height in possible_resolutions:
|
422 |
+
# Calculate the downscaled size to keep the aspect ratio
|
423 |
+
scale = min(width / original_width, height / original_height)
|
424 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(
|
425 |
+
original_height * scale
|
426 |
+
)
|
427 |
+
|
428 |
+
# Calculate effective and wasted resolutions
|
429 |
+
effective_resolution = min(
|
430 |
+
downscaled_width * downscaled_height, original_width * original_height
|
431 |
+
)
|
432 |
+
wasted_resolution = (width * height) - effective_resolution
|
433 |
+
|
434 |
+
if effective_resolution > max_effective_resolution or (
|
435 |
+
effective_resolution == max_effective_resolution
|
436 |
+
and wasted_resolution < min_wasted_resolution
|
437 |
+
):
|
438 |
+
max_effective_resolution = effective_resolution
|
439 |
+
min_wasted_resolution = wasted_resolution
|
440 |
+
best_fit = (width, height)
|
441 |
+
|
442 |
+
return best_fit
|
443 |
+
|
444 |
+
|
445 |
+
def resize_and_pad_image(image, target_resolution):
|
446 |
+
"""
|
447 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
448 |
+
|
449 |
+
Args:
|
450 |
+
image (PIL.Image.Image): The input image.
|
451 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
452 |
+
|
453 |
+
Returns:
|
454 |
+
PIL.Image.Image: The resized and padded image.
|
455 |
+
"""
|
456 |
+
original_width, original_height = image.size
|
457 |
+
target_width, target_height = target_resolution
|
458 |
+
|
459 |
+
# Determine which dimension (width or height) to fill
|
460 |
+
scale_w = target_width / original_width
|
461 |
+
scale_h = target_height / original_height
|
462 |
+
|
463 |
+
if scale_w < scale_h:
|
464 |
+
# Width will be filled completely
|
465 |
+
new_width = target_width
|
466 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
467 |
+
else:
|
468 |
+
# Height will be filled completely
|
469 |
+
new_height = target_height
|
470 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
471 |
+
|
472 |
+
# Resize the image
|
473 |
+
resized_image = image.resize((new_width, new_height))
|
474 |
+
|
475 |
+
# Create a new image with the target size and paste the resized image onto it
|
476 |
+
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
|
477 |
+
paste_x = (target_width - new_width) // 2
|
478 |
+
paste_y = (target_height - new_height) // 2
|
479 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
480 |
+
|
481 |
+
return new_image
|
482 |
+
|
483 |
+
|
484 |
+
def divide_to_patches(image, patch_size):
|
485 |
+
"""
|
486 |
+
Divides an image into patches of a specified size.
|
487 |
+
|
488 |
+
Args:
|
489 |
+
image (PIL.Image.Image): The input image.
|
490 |
+
patch_size (int): The size of each patch.
|
491 |
+
|
492 |
+
Returns:
|
493 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
494 |
+
"""
|
495 |
+
patches = []
|
496 |
+
width, height = image.size
|
497 |
+
for i in range(0, height, patch_size):
|
498 |
+
for j in range(0, width, patch_size):
|
499 |
+
box = (j, i, j + patch_size, i + patch_size)
|
500 |
+
patch = image.crop(box)
|
501 |
+
patches.append(patch)
|
502 |
+
|
503 |
+
return patches
|
504 |
+
|
505 |
+
|
506 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
507 |
+
best_ratio_diff = float("inf")
|
508 |
+
best_ratio = (1, 1)
|
509 |
+
area = width * height
|
510 |
+
for ratio in target_ratios:
|
511 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
512 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
513 |
+
if ratio_diff < best_ratio_diff:
|
514 |
+
best_ratio_diff = ratio_diff
|
515 |
+
best_ratio = ratio
|
516 |
+
elif ratio_diff == best_ratio_diff:
|
517 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
518 |
+
best_ratio = ratio
|
519 |
+
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
520 |
+
return best_ratio
|
521 |
+
|
522 |
+
|
523 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
524 |
+
orig_width, orig_height = image.size
|
525 |
+
aspect_ratio = orig_width / orig_height
|
526 |
+
|
527 |
+
# calculate the existing image aspect ratio
|
528 |
+
target_ratios = set(
|
529 |
+
(i, j)
|
530 |
+
for n in range(min_num, max_num + 1)
|
531 |
+
for i in range(1, n + 1)
|
532 |
+
for j in range(1, n + 1)
|
533 |
+
if i * j <= max_num and i * j >= min_num
|
534 |
+
)
|
535 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
536 |
+
|
537 |
+
# find the closest aspect ratio to the target
|
538 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
539 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size
|
540 |
+
)
|
541 |
+
|
542 |
+
# calculate the target width and height
|
543 |
+
target_width = image_size * target_aspect_ratio[0]
|
544 |
+
target_height = image_size * target_aspect_ratio[1]
|
545 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
546 |
+
|
547 |
+
# resize the image
|
548 |
+
resized_img = image.resize((target_width, target_height))
|
549 |
+
processed_images = []
|
550 |
+
for i in range(blocks):
|
551 |
+
box = (
|
552 |
+
(i % (target_width // image_size)) * image_size,
|
553 |
+
(i // (target_width // image_size)) * image_size,
|
554 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
555 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
556 |
+
)
|
557 |
+
# split the image
|
558 |
+
split_img = resized_img.crop(box)
|
559 |
+
processed_images.append(split_img)
|
560 |
+
assert len(processed_images) == blocks
|
561 |
+
if use_thumbnail and len(processed_images) != 1:
|
562 |
+
thumbnail_img = image.resize((image_size, image_size))
|
563 |
+
# processed_images.append(thumbnail_img)
|
564 |
+
processed_images = [
|
565 |
+
thumbnail_img,
|
566 |
+
] + processed_images
|
567 |
+
return processed_images, (target_width, target_height)
|
568 |
+
|
569 |
+
|
570 |
+
##############################################################
|
571 |
+
|
572 |
+
##############################################################
|
573 |
+
# modify from long_vita_megatron/tasks/inference/module.py
|
574 |
+
##############################################################
|
575 |
+
def get_external_inputs(tokens, image_list=None, image_path_list=None, video_path_list=None):
|
576 |
+
print(f"get_external_inputs tokens {tokens.size()}")
|
577 |
+
tokens = tokens.tolist()
|
578 |
+
|
579 |
+
image_token_length = 256
|
580 |
+
max_num_frame = 4096
|
581 |
+
max_fps = 1
|
582 |
+
|
583 |
+
# from cognitron_vl.constants import IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN, VID_START_TOKEN, VID_END_TOKEN, VID_CONTEXT_TOKEN, PATCH_START_TOKEN, PATCH_END_TOKEN, PATCH_CONTEXT_TOKEN, IMG_TAG_TOKEN, VID_TAG_TOKEN
|
584 |
+
image_tag = "<image>"
|
585 |
+
video_tag = "<video>"
|
586 |
+
|
587 |
+
IMG_CONTEXT_ID = tokenizer(IMG_CONTEXT_TOKEN, add_special_tokens=False).input_ids
|
588 |
+
IMG_START_ID = tokenizer(IMG_START_TOKEN, add_special_tokens=False).input_ids
|
589 |
+
IMG_END_ID = tokenizer(IMG_END_TOKEN, add_special_tokens=False).input_ids
|
590 |
+
|
591 |
+
VID_CONTEXT_ID = tokenizer(VID_CONTEXT_TOKEN, add_special_tokens=False).input_ids
|
592 |
+
VID_START_ID = tokenizer(VID_START_TOKEN, add_special_tokens=False).input_ids
|
593 |
+
VID_END_ID = tokenizer(VID_END_TOKEN, add_special_tokens=False).input_ids
|
594 |
+
|
595 |
+
PATCH_CONTEXT_ID = tokenizer(PATCH_CONTEXT_TOKEN, add_special_tokens=False).input_ids
|
596 |
+
PATCH_START_ID = tokenizer(PATCH_START_TOKEN, add_special_tokens=False).input_ids
|
597 |
+
PATCH_END_ID = tokenizer(PATCH_END_TOKEN, add_special_tokens=False).input_ids
|
598 |
+
|
599 |
+
IMG_TAG_ID = tokenizer(IMG_TAG_TOKEN, add_special_tokens=False).input_ids
|
600 |
+
VID_TAG_ID = tokenizer(VID_TAG_TOKEN, add_special_tokens=False).input_ids
|
601 |
+
|
602 |
+
assert len(IMG_CONTEXT_ID) == 1
|
603 |
+
assert len(IMG_START_ID) == 1
|
604 |
+
assert len(IMG_END_ID) == 1
|
605 |
+
|
606 |
+
assert len(VID_CONTEXT_ID) == 1
|
607 |
+
assert len(VID_START_ID) == 1
|
608 |
+
assert len(VID_END_ID) == 1
|
609 |
+
|
610 |
+
assert len(PATCH_CONTEXT_ID) == 1
|
611 |
+
assert len(PATCH_START_ID) == 1
|
612 |
+
assert len(PATCH_END_ID) == 1
|
613 |
+
|
614 |
+
IMG_CONTEXT_ID = IMG_CONTEXT_ID[0]
|
615 |
+
IMG_START_ID = IMG_START_ID[0]
|
616 |
+
IMG_END_ID = IMG_END_ID[0]
|
617 |
+
|
618 |
+
VID_CONTEXT_ID = VID_CONTEXT_ID[0]
|
619 |
+
VID_START_ID = VID_START_ID[0]
|
620 |
+
VID_END_ID = VID_END_ID[0]
|
621 |
+
|
622 |
+
PATCH_CONTEXT_ID = PATCH_CONTEXT_ID[0]
|
623 |
+
PATCH_START_ID = PATCH_START_ID[0]
|
624 |
+
PATCH_END_ID = PATCH_END_ID[0]
|
625 |
+
|
626 |
+
IMG_TAG_ID = IMG_TAG_ID[0]
|
627 |
+
VID_TAG_ID = VID_TAG_ID[0]
|
628 |
+
|
629 |
+
nl_tokens = tokenizer("\n", add_special_tokens=False).input_ids
|
630 |
+
|
631 |
+
image_indices = []
|
632 |
+
images = []
|
633 |
+
|
634 |
+
# ----------------------------------------------------------------
|
635 |
+
# image
|
636 |
+
for batch_idx, input_ids in enumerate(tokens):
|
637 |
+
# img_positions = [i for i, x in enumerate(input_ids) if x == IMG_CONTEXT_ID]
|
638 |
+
img_positions = [i for i, x in enumerate(input_ids) if x == IMG_TAG_ID]
|
639 |
+
if len(img_positions) == 0:
|
640 |
+
continue
|
641 |
+
if image_path_list is not None:
|
642 |
+
assert len(img_positions) == len(image_path_list), f"{img_positions} {image_path_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}"
|
643 |
+
if image_list is not None:
|
644 |
+
assert len(img_positions) == len(image_list), f"{img_positions} {image_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}"
|
645 |
+
|
646 |
+
new_input_ids = []
|
647 |
+
st = 0
|
648 |
+
for img_idx, img_pos in enumerate(img_positions):
|
649 |
+
if image_path_list is not None:
|
650 |
+
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_path_list[img_idx])
|
651 |
+
if image_list is not None:
|
652 |
+
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_list[img_idx])
|
653 |
+
images.append(image_patches)
|
654 |
+
print(f"get_external_inputs best_width {best_width} best_height {best_height}")
|
655 |
+
|
656 |
+
new_input_ids += input_ids[st:img_pos]
|
657 |
+
|
658 |
+
new_input_ids += [IMG_START_ID]
|
659 |
+
|
660 |
+
image_indice_b = torch.zeros(
|
661 |
+
1, image_token_length, dtype=torch.int64
|
662 |
+
) # This will change in collate_fn
|
663 |
+
image_indice_s = (
|
664 |
+
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
|
665 |
+
.unsqueeze(0)
|
666 |
+
.repeat(1, 1)
|
667 |
+
)
|
668 |
+
image_indice_b_s = torch.stack(
|
669 |
+
[image_indice_b, image_indice_s], dim=0
|
670 |
+
) # 2, num_image, image_length
|
671 |
+
image_indices.append(image_indice_b_s)
|
672 |
+
|
673 |
+
new_input_ids += [IMG_CONTEXT_ID] * image_token_length
|
674 |
+
|
675 |
+
new_input_ids += [IMG_END_ID]
|
676 |
+
|
677 |
+
if len(image_patches) > 1:
|
678 |
+
for i in range(0, best_height, image_processor.patch_size):
|
679 |
+
new_input_ids += nl_tokens
|
680 |
+
|
681 |
+
for j in range(0, best_width, image_processor.patch_size):
|
682 |
+
new_input_ids += [PATCH_START_ID]
|
683 |
+
|
684 |
+
image_indice_b = torch.zeros(
|
685 |
+
1, image_token_length, dtype=torch.int64
|
686 |
+
) # This will change in collate_fn
|
687 |
+
image_indice_s = (
|
688 |
+
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
|
689 |
+
.unsqueeze(0)
|
690 |
+
.repeat(1, 1)
|
691 |
+
)
|
692 |
+
image_indice_b_s = torch.stack(
|
693 |
+
[image_indice_b, image_indice_s], dim=0
|
694 |
+
) # 2, num_image, image_length
|
695 |
+
image_indices.append(image_indice_b_s)
|
696 |
+
|
697 |
+
new_input_ids += [PATCH_CONTEXT_ID] * image_token_length
|
698 |
+
|
699 |
+
new_input_ids += [PATCH_END_ID]
|
700 |
+
# print(f"get_external_dict i {i} j {j} new_input_ids {len(new_input_ids)}")
|
701 |
+
|
702 |
+
st = img_pos + 1
|
703 |
+
|
704 |
+
new_input_ids += input_ids[st:]
|
705 |
+
|
706 |
+
input_ids = new_input_ids
|
707 |
+
tokens[batch_idx] = input_ids
|
708 |
+
|
709 |
+
# ----------------------------------------------------------------
|
710 |
+
# video
|
711 |
+
for batch_idx, input_ids in enumerate(tokens):
|
712 |
+
# vid_positions = [i for i, x in enumerate(input_ids) if x == VID_CONTEXT_ID]
|
713 |
+
vid_positions = [i for i, x in enumerate(input_ids) if x == VID_TAG_ID]
|
714 |
+
if len(vid_positions) == 0:
|
715 |
+
continue
|
716 |
+
if video_path_list is not None:
|
717 |
+
assert len(vid_positions) == len(video_path_list), f"{vid_positions} {video_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}"
|
718 |
+
if image_path_list is not None:
|
719 |
+
assert len(vid_positions) == len(image_path_list), f"{vid_positions} {image_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}"
|
720 |
+
if image_list is not None:
|
721 |
+
assert len(vid_positions) == len(image_list), f"{vid_positions} {image_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}"
|
722 |
+
|
723 |
+
new_input_ids = []
|
724 |
+
st = 0
|
725 |
+
for vid_idx, vid_pos in enumerate(vid_positions):
|
726 |
+
if video_path_list is not None:
|
727 |
+
video_frames, _ = image_processor.process_video(video_path_list[vid_idx], max_num_frame, max_fps)
|
728 |
+
if image_path_list is not None:
|
729 |
+
video_frames = image_processor.process_images([image_path_list[vid_idx]])
|
730 |
+
if image_list is not None:
|
731 |
+
video_frames = image_processor.process_images([image_list[vid_idx]])
|
732 |
+
|
733 |
+
images.append(video_frames)
|
734 |
+
|
735 |
+
new_input_ids += input_ids[st:vid_pos]
|
736 |
+
|
737 |
+
for _ in video_frames:
|
738 |
+
new_input_ids += [VID_START_ID]
|
739 |
+
|
740 |
+
image_indice_b = torch.zeros(
|
741 |
+
1, image_token_length, dtype=torch.int64
|
742 |
+
) # This will change in collate_fn
|
743 |
+
image_indice_s = (
|
744 |
+
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
|
745 |
+
.unsqueeze(0)
|
746 |
+
.repeat(1, 1)
|
747 |
+
)
|
748 |
+
image_indice_b_s = torch.stack(
|
749 |
+
[image_indice_b, image_indice_s], dim=0
|
750 |
+
) # 2, num_image, image_length
|
751 |
+
image_indices.append(image_indice_b_s)
|
752 |
+
|
753 |
+
new_input_ids += [VID_CONTEXT_ID] * image_token_length
|
754 |
+
|
755 |
+
new_input_ids += [VID_END_ID]
|
756 |
+
|
757 |
+
st = vid_pos + 1
|
758 |
+
|
759 |
+
new_input_ids += input_ids[st:]
|
760 |
+
|
761 |
+
input_ids = new_input_ids
|
762 |
+
tokens[batch_idx] = input_ids
|
763 |
+
|
764 |
+
if len(images) > 0:
|
765 |
+
images = torch.cat(images, dim=0)
|
766 |
+
image_indices = torch.cat(image_indices, dim=1)
|
767 |
+
|
768 |
+
image_indices = image_indices.contiguous().to(torch.cuda.current_device())
|
769 |
+
if True:
|
770 |
+
images = torch.tensor(images, dtype=torch.bfloat16).contiguous().to(torch.cuda.current_device())
|
771 |
+
|
772 |
+
else:
|
773 |
+
images = torch.tensor(images, dtype=torch.float16).contiguous().to(torch.cuda.current_device())
|
774 |
+
|
775 |
+
print(f"get_external_inputs images {images.size()}")
|
776 |
+
print(f"get_external_inputs image_indices {image_indices.size()}")
|
777 |
+
|
778 |
+
else:
|
779 |
+
images = None
|
780 |
+
image_indices = None
|
781 |
+
|
782 |
+
print(f"get_external_inputs images {images}")
|
783 |
+
print(f"get_external_inputs image_indices {image_indices}")
|
784 |
+
|
785 |
+
tokens = torch.tensor(tokens, dtype=torch.long, device='cuda')
|
786 |
+
|
787 |
+
print(f"get_external_inputs tokens {tokens.size()}")
|
788 |
+
|
789 |
+
return tokens, images, image_indices
|
790 |
+
|
791 |
+
##############################################################
|
792 |
+
|
793 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
794 |
+
from transformers.generation import GenerationConfig
|
795 |
+
import torch
|
796 |
+
|
797 |
+
import importlib
|
798 |
+
if importlib.util.find_spec("torch_npu") is not None:
|
799 |
+
print("Loading torch_npu")
|
800 |
+
import torch_npu
|
801 |
+
from torch_npu.contrib import transfer_to_npu
|
802 |
+
# torch.npu.set_compile_mode(jit_compile=True)
|
803 |
+
|
804 |
+
|
805 |
+
import sys
|
806 |
+
import os
|
807 |
+
import natsort
|
808 |
+
|
809 |
+
torch.manual_seed(1234)
|
810 |
+
|
811 |
+
model_name_or_path = "VITA-MLLM/Long-VITA-128K_HF"
|
812 |
+
|
813 |
+
device_map = "auto"
|
814 |
+
# device_map = "npu:0"
|
815 |
+
# torch_dtype=torch.float16
|
816 |
+
torch_dtype=torch.bfloat16
|
817 |
+
# torch_dtype=torch.float32
|
818 |
+
|
819 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
820 |
+
model_name_or_path,
|
821 |
+
trust_remote_code=True
|
822 |
+
)
|
823 |
+
print("tokenizer", tokenizer)
|
824 |
+
|
825 |
+
model = AutoModelForCausalLM.from_pretrained(
|
826 |
+
model_name_or_path,
|
827 |
+
trust_remote_code=True,
|
828 |
+
device_map=device_map,
|
829 |
+
torch_dtype=torch_dtype,
|
830 |
+
attn_implementation="flash_attention_2",
|
831 |
+
).eval()
|
832 |
+
# print("model", model)
|
833 |
+
|
834 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
|
835 |
+
|
836 |
+
model.generation_config.max_new_tokens = 1024
|
837 |
+
model.generation_config.chat_format = "chatml"
|
838 |
+
model.generation_config.max_window_size = 1310720
|
839 |
+
model.generation_config.do_sample = False
|
840 |
+
model.generation_config.use_cache = True
|
841 |
+
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
842 |
+
|
843 |
+
# from cognitron_vl.data.processor.image_processor import ImageProcessor
|
844 |
+
image_processor = ImageProcessor(
|
845 |
+
process_type="dynamic",
|
846 |
+
image_size=448,
|
847 |
+
normalize_type="imagenet",
|
848 |
+
min_patch_grid=1,
|
849 |
+
max_patch_grid=12,
|
850 |
+
)
|
851 |
+
|
852 |
+
import gradio as gr
|
853 |
+
import spaces
|
854 |
+
|
855 |
+
@spaces.GPU(duration=120)
|
856 |
+
def inference_model(messages, image_path_list, video_path_list):
|
857 |
+
|
858 |
+
default_system_message = [
|
859 |
+
{
|
860 |
+
"role": "system",
|
861 |
+
"content": "You are a helpful AI assistant.",
|
862 |
+
}
|
863 |
+
]
|
864 |
+
messages = default_system_message + messages
|
865 |
+
|
866 |
+
inputs = tokenizer.apply_chat_template(
|
867 |
+
messages,
|
868 |
+
tokenize=True,
|
869 |
+
add_generation_prompt=True,
|
870 |
+
return_tensors="pt",
|
871 |
+
)
|
872 |
+
# .to("cuda")
|
873 |
+
print("input", tokenizer.decode(inputs[0], skip_special_tokens=False), flush=True)
|
874 |
+
|
875 |
+
inputs, images, image_indices = get_external_inputs(inputs, image_path_list=image_path_list, video_path_list=video_path_list)
|
876 |
+
# inputs = inputs.to("cuda")
|
877 |
+
# images = images.to("cuda")
|
878 |
+
# image_indices = image_indices.to("cuda")
|
879 |
+
|
880 |
+
|
881 |
+
outputs = model.generate(inputs=inputs, images=images, image_indices=image_indices)
|
882 |
+
|
883 |
+
|
884 |
+
# output = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
885 |
+
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
886 |
+
print(f"output {output}", flush=True)
|
887 |
+
|
888 |
+
return output
|
889 |
+
|
890 |
+
|
891 |
+
import time
|
892 |
+
import filetype
|
893 |
+
|
894 |
+
|
895 |
+
font_size = "2.5em"
|
896 |
+
html = f"""
|
897 |
+
<p align="center" style="font-size: {font_size}; line-height: 1;">
|
898 |
+
<span style="display: inline-block; vertical-align: middle;">{model_name_or_path.split('/')[-1]}</span>
|
899 |
+
</p>
|
900 |
+
<center>
|
901 |
+
<font size=3>
|
902 |
+
<b>Long-VITA</b> has been fully open-sourced on <a href='https://huggingface.co/VITA-MLLM'>😊 Huggingface</a> and <a href='https://github.com/VITA-MLLM/Long-VITA'>🌟 GitHub</a>. If you find Long-VITA useful, a like❤️ or a star🌟 would be appreciated.
|
903 |
+
</font>
|
904 |
+
</center>
|
905 |
+
"""
|
906 |
+
|
907 |
+
def add_message(history, message):
|
908 |
+
for x in message["files"]:
|
909 |
+
history.append({"role": "user", "content": {"path": x}})
|
910 |
+
if message["text"] is not None:
|
911 |
+
history.append({"role": "user", "content": message["text"]})
|
912 |
+
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
913 |
+
|
914 |
+
|
915 |
+
def bot(history: list):
|
916 |
+
print("#" * 100)
|
917 |
+
messages = []
|
918 |
+
image_path_list = []
|
919 |
+
video_path_list = []
|
920 |
+
for message in history:
|
921 |
+
# print(f"message {message}")
|
922 |
+
role = message["role"]
|
923 |
+
content = message["content"]
|
924 |
+
if isinstance(content, str):
|
925 |
+
if len(messages) == 0 or messages[-1]["role"] != role:
|
926 |
+
messages.append(
|
927 |
+
{
|
928 |
+
"role": role,
|
929 |
+
"content": "",
|
930 |
+
}
|
931 |
+
)
|
932 |
+
messages[-1]["content"] = messages[-1]["content"] + content
|
933 |
+
|
934 |
+
else:
|
935 |
+
for filepath in content:
|
936 |
+
if filetype.is_image(filepath):
|
937 |
+
# print(f"{filepath} is a valid image...")
|
938 |
+
if len(messages) == 0 or messages[-1]["role"] != role:
|
939 |
+
messages.append(
|
940 |
+
{
|
941 |
+
"role": role,
|
942 |
+
"content": "",
|
943 |
+
}
|
944 |
+
)
|
945 |
+
messages[-1]["content"] = "<image>" + messages[-1]["content"]
|
946 |
+
image_path_list.append(filepath)
|
947 |
+
|
948 |
+
elif filetype.is_video(filepath):
|
949 |
+
# print(f"{filepath} is a valid video...")
|
950 |
+
if len(messages) == 0 or messages[-1]["role"] != role:
|
951 |
+
messages.append(
|
952 |
+
{
|
953 |
+
"role": role,
|
954 |
+
"content": "",
|
955 |
+
}
|
956 |
+
)
|
957 |
+
messages[-1]["content"] = "<video>" + messages[-1]["content"]
|
958 |
+
video_path_list.append(filepath)
|
959 |
+
|
960 |
+
print(f"messages {messages}")
|
961 |
+
print(f"image_path_list {image_path_list}")
|
962 |
+
print(f"video_path_list {video_path_list}")
|
963 |
+
|
964 |
+
if len(image_path_list) == 0:
|
965 |
+
image_path_list = None
|
966 |
+
if len(video_path_list) == 0:
|
967 |
+
video_path_list = None
|
968 |
+
|
969 |
+
output = inference_model(messages, image_path_list, video_path_list)
|
970 |
+
|
971 |
+
history.append({"role": "assistant", "content": output})
|
972 |
+
|
973 |
+
return history
|
974 |
+
|
975 |
+
|
976 |
+
with gr.Blocks(title=model_name_or_path.split('/')[-1] + "🔥🚀🔥", theme=gr.themes.Ocean()) as demo:
|
977 |
+
gr.HTML(html)
|
978 |
+
with gr.Row():
|
979 |
+
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", bubble_full_width=False, height=800)
|
980 |
+
|
981 |
+
with gr.Row():
|
982 |
+
chat_input = gr.MultimodalTextbox(
|
983 |
+
interactive=True,
|
984 |
+
file_count="multiple",
|
985 |
+
file_types=['image', 'video'],
|
986 |
+
placeholder="Enter message or upload file...",
|
987 |
+
show_label=False,
|
988 |
+
# sources=["microphone", "upload"],
|
989 |
+
sources=["upload"],
|
990 |
+
)
|
991 |
+
|
992 |
+
|
993 |
+
chat_msg = chat_input.submit(
|
994 |
+
add_message, [chatbot, chat_input], [chatbot, chat_input]
|
995 |
+
)
|
996 |
+
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
|
997 |
+
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
|
998 |
+
|
999 |
+
demo.launch(
|
1000 |
+
server_port=8501,
|
1001 |
+
server_name="0.0.0.0",
|
1002 |
+
)
|