Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,057 Bytes
ea705ee 781949e ea705ee 781949e ea705ee dcbf0ce ea705ee dcbf0ce ea705ee 7a28249 dcbf0ce 66606fd dcbf0ce aeb04aa ea705ee f9a86ee ea705ee aeb04aa f9a86ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 |
##############################################################
# copy from cognitron_vl/constants.py
##############################################################
import logging
logger = logging.getLogger(__name__)
if True:
IMG_TAG_TOKEN = "<image>"
VID_TAG_TOKEN = "<video>"
AUD_TAG_TOKEN = "<audio>"
IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
VID_CONTEXT_TOKEN = '<VID_CONTEXT>'
VID_START_TOKEN = '<vid>'
VID_END_TOKEN = '</vid>'
PATCH_CONTEXT_TOKEN = '<PATCH_CONTEXT>'
PATCH_START_TOKEN = '<patch>'
PATCH_END_TOKEN = '</patch>'
AUD_START_TOKEN = '<|begin_of_audio|>'
AUD_END_TOKEN = '<|end_of_audio|>'
QUAD_START_TOKEN = '<quad>'
QUAD_END_TOKEN = '</quad>'
REF_START_TOKEN = '<ref>'
REF_END_TOKEN = '</ref>'
BOX_START_TOKEN = '<box>'
BOX_END_TOKEN = '</box>'
if False:
IMG_TAG_TOKEN = "<|image|>"
VID_TAG_TOKEN = "<|video|>"
AUD_TAG_TOKEN = "<|audio|>"
IMG_CONTEXT_TOKEN = '<|context_of_image|>'
IMG_START_TOKEN = '<|begin_of_image|>'
IMG_END_TOKEN = '<|end_of_image|>'
VID_CONTEXT_TOKEN = '<|context_of_video|>'
VID_START_TOKEN = '<|begin_of_video|>'
VID_END_TOKEN = '<|end_of_video|>'
PATCH_CONTEXT_TOKEN = '<|context_of_patch|>'
PATCH_START_TOKEN = '<|begin_of_patch|>'
PATCH_END_TOKEN = '<|end_of_patch|>'
AUD_START_TOKEN = '<|begin_of_audio|>'
AUD_END_TOKEN = '<|end_of_audio|>'
QUAD_START_TOKEN = '<|begin_of_quad|>'
QUAD_END_TOKEN = '<|end_of_quad|>'
REF_START_TOKEN = '<|begin_of_ref|>'
REF_END_TOKEN = '<|end_of_ref|>'
BOX_START_TOKEN = '<|begin_of_box|>'
BOX_END_TOKEN = '<|end_of_box|>'
logger.info(f"IMG_TAG_TOKEN {IMG_TAG_TOKEN}")
logger.info(f"VID_TAG_TOKEN {VID_TAG_TOKEN}")
logger.info(f"AUD_TAG_TOKEN {AUD_TAG_TOKEN}")
logger.info(f"IMG_CONTEXT_TOKEN {IMG_CONTEXT_TOKEN}")
logger.info(f"IMG_START_TOKEN {IMG_START_TOKEN}")
logger.info(f"IMG_END_TOKEN {IMG_END_TOKEN}")
logger.info(f"VID_CONTEXT_TOKEN {VID_CONTEXT_TOKEN}")
logger.info(f"VID_START_TOKEN {VID_START_TOKEN}")
logger.info(f"VID_END_TOKEN {VID_END_TOKEN}")
logger.info(f"PATCH_CONTEXT_TOKEN {PATCH_CONTEXT_TOKEN}")
logger.info(f"PATCH_START_TOKEN {PATCH_START_TOKEN}")
logger.info(f"PATCH_END_TOKEN {PATCH_END_TOKEN}")
logger.info(f"AUD_START_TOKEN {AUD_START_TOKEN}")
logger.info(f"AUD_END_TOKEN {AUD_END_TOKEN}")
# IMAGENET_MEAN = (0.485, 0.456, 0.406)
# IMAGENET_STD = (0.229, 0.224, 0.225)
# CLIP_MEAN = (0.4814546, 0.4578275, 0.40821073)
# CLIP_STD = (0.2686295, 0.2613025, 0.2757711)
# SIGLIP_MEAN = (0.5, 0.5, 0.5)
# SIGLIP_STD = (0.5, 0.5, 0.5)
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = IMG_CONTEXT_TOKEN
DEFAULT_IMAGE_PATCH_TOKEN = PATCH_CONTEXT_TOKEN
DEFAULT_IM_START_TOKEN = IMG_START_TOKEN
DEFAULT_IM_END_TOKEN = IMG_END_TOKEN
##############################################################
##############################################################
# copy from cognitron_vl/data/processor/image_processor.py
##############################################################
import math
import os
import cv2
import natsort
import numpy as np
import torch
from PIL import Image
import decord
# from cognitron_vl.constants import (
# IMAGENET_DEFAULT_MEAN,
# IMAGENET_DEFAULT_STD,
# IMAGENET_STANDARD_MEAN,
# IMAGENET_STANDARD_STD,
# OPENAI_CLIP_MEAN,
# OPENAI_CLIP_STD,
# )
class ImageProcessor:
def __init__(
self,
process_type,
image_size=448,
normalize_type="imagenet",
min_patch_grid=1,
max_patch_grid=6,
):
self.process_type = process_type
self.image_size = image_size
if normalize_type == "imagenet":
MEAN, STD = IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
elif normalize_type == "clip":
MEAN, STD = OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
elif normalize_type == "siglip":
MEAN, STD = IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
else:
raise NotImplementedError
self.mean = MEAN
self.std = STD
self.patch_size = image_size
self.min_patch_grid = min_patch_grid
self.max_patch_grid = max_patch_grid
if self.process_type == "anyres":
self.grid_pinpoints = [
(i, j)
for i in range(min_patch_grid, max_patch_grid + 1)
for j in range(min_patch_grid, max_patch_grid + 1)
]
self.possible_resolutions = [
[dim * self.patch_size for dim in pair] for pair in self.grid_pinpoints
]
print(f"grid_pinpoints {self.grid_pinpoints}")
print(f"possible_resolutions {self.possible_resolutions}")
if self.process_type == "dynamic":
max_num = self.max_patch_grid
min_num = self.min_patch_grid
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
self.target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
self.possible_resolutions = [
[dim * self.patch_size for dim in pair] for pair in self.target_ratios
]
print(f"target_ratios {self.target_ratios}")
print(f"possible_resolutions {self.possible_resolutions}")
def get_frame_paths(self, frame_root, num_frames=8):
os.makedirs(frame_root, exist_ok=True)
self.frame_tmpl = "frame-{}-of-{}.jpg"
return [
os.path.join(frame_root, self.frame_tmpl.format(i, num_frames))
for i in range(1, num_frames + 1)
]
def save_video_frames(self, vid_path, max_fps=1, num_frames=8):
vid = decord.VideoReader(vid_path, num_threads=1)
step_size = len(vid) / (num_frames + 1)
# step_size = max(1, step_size)
fps = vid.get_avg_fps()
step_size = max(fps / max_fps, step_size)
# indices = [int(i * step_size) for i in range(1, num_frames + 1)]
indices = [int(i * step_size) for i in range(0, num_frames)]
indices = [i for i in indices if i < len(vid)]
num_frames = len(indices)
frame_paths = self.get_frame_paths(vid_path + ".saved_frames", num_frames)
flag = np.all([os.path.exists(p) for p in frame_paths])
if flag:
return frame_paths
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
for im, pth in zip(images, frame_paths):
# if not os.path.exists(pth):
# im.save(pth)
im.save(pth)
# print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}")
return frame_paths
def get_video_frames(self, vid_path, max_fps=1, num_frames=8):
vid = decord.VideoReader(vid_path, num_threads=1)
step_size = len(vid) / (num_frames + 1)
# step_size = max(1, step_size)
fps = vid.get_avg_fps()
step_size = max(fps / max_fps, step_size)
# indices = [int(i * step_size) for i in range(1, num_frames + 1)]
indices = [int(i * step_size) for i in range(0, num_frames)]
indices = [i for i in indices if i < len(vid)]
images = [vid[i].asnumpy() for i in indices]
images = [Image.fromarray(arr) for arr in images]
# print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}")
return images
def process_video(self, video_file_or_dir, max_num_frame=8, max_fps=1):
if os.path.isdir(video_file_or_dir):
all_filepath = []
for root, dirs, files in os.walk(video_file_or_dir):
for filename in files:
if (
filename.endswith("png")
or filename.endswith("jpeg")
or filename.endswith("jpg")
):
filepath = os.path.join(root, filename)
all_filepath.append(filepath)
if len(all_filepath) == 0:
return None
# all_filepath.sort()
all_filepath = natsort.natsorted(all_filepath)
total_frame = len(all_filepath)
if "ShareGPTVideo" in video_file_or_dir:
fps = 2
else:
fps = 1
target_frame = int(min(total_frame / fps * max_fps, max_num_frame))
index = [int(1.0 * total_frame / target_frame) * x for x in range(target_frame)]
selected_filepath = [all_filepath[x] for x in index]
img_or_path_list = selected_filepath
# print(f"process_video {img_or_path_list}")
elif os.path.isfile(video_file_or_dir):
# frame_paths = self.save_video_frames(
# video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps
# )
# img_or_path_list = frame_paths
img_or_path_list = self.get_video_frames(
video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps
)
else:
# print(f"FileNotFoundError {video_file_or_dir}")
raise NotImplementedError
return self.process_images(img_or_path_list), img_or_path_list
def process_images(self, img_or_path_list):
if isinstance(img_or_path_list[0], str):
images = [Image.open(x).convert("RGB") for x in img_or_path_list]
elif isinstance(img_or_path_list[0], Image.Image):
images = [x.convert("RGB") for x in img_or_path_list]
else:
images = img_or_path_list
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image_tensor = torch.ones([len(images), 3, self.image_size, self.image_size])
for i, image in enumerate(images):
image = expand2square(image, tuple(int(x * 255) for x in self.mean))
image = image.resize(
(self.image_size, self.image_size), resample=Image.Resampling.BICUBIC
)
image = np.array(image, dtype=np.float32)
image = image * 1.0 / 255.0
mean = np.array(self.mean, dtype=image.dtype)
std = np.array(self.std, dtype=image.dtype)
image = (image - mean) / std
image = torch.tensor(image, dtype=torch.float32)
image = image.permute(2, 0, 1)
image_tensor[i] = image
return image_tensor
def process_images_with_subpatch(self, img_or_path):
if self.process_type == "anyres":
return self.process_anyres(img_or_path)
if self.process_type == "dynamic":
return self.process_dynamic(img_or_path)
if isinstance(img_or_path, str):
image = Image.open(img_or_path).convert("RGB")
elif isinstance(img_or_path, Image.Image):
image = img_or_path.convert("RGB")
else:
image = img_or_path
return self.process_images([images])
def process_anyres(self, img_or_path):
if isinstance(img_or_path, str):
image = Image.open(img_or_path).convert("RGB")
elif isinstance(img_or_path, Image.Image):
image = img_or_path.convert("RGB")
else:
image = img_or_path
best_resolution = select_best_resolution(image.size, self.possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, self.patch_size)
if best_resolution == (self.patch_size, self.patch_size):
image_patches = [image]
else:
image_patches = [image] + patches
image_patches = self.process_images(image_patches)
# print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}")
return image_patches, best_resolution
def process_dynamic(self, img_or_path):
if isinstance(img_or_path, str):
image = Image.open(img_or_path).convert("RGB")
elif isinstance(img_or_path, Image.Image):
image = img_or_path.convert("RGB")
else:
image = img_or_path
image_patches, best_resolution = dynamic_preprocess(
image,
min_num=self.min_patch_grid,
max_num=self.max_patch_grid,
image_size=self.patch_size,
use_thumbnail=True,
)
image_patches = self.process_images(image_patches)
# print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}")
return image_patches, best_resolution
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(
original_height * scale
)
# Calculate effective and wasted resolutions
effective_resolution = min(
downscaled_width * downscaled_height, original_width * original_height
)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (
effective_resolution == max_effective_resolution
and wasted_resolution < min_wasted_resolution
):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Determine which dimension (width or height) to fill
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
# Width will be filled completely
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
# Height will be filled completely
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
# processed_images.append(thumbnail_img)
processed_images = [
thumbnail_img,
] + processed_images
return processed_images, (target_width, target_height)
##############################################################
##############################################################
# modify from long_vita_megatron/tasks/inference/module.py
##############################################################
def get_external_inputs(tokens, image_list=None, image_path_list=None, video_path_list=None):
print(f"get_external_inputs tokens {tokens.size()}")
tokens = tokens.tolist()
image_token_length = 256
max_num_frame = 4096
max_fps = 1
# from cognitron_vl.constants import IMG_START_TOKEN, IMG_END_TOKEN, IMG_CONTEXT_TOKEN, VID_START_TOKEN, VID_END_TOKEN, VID_CONTEXT_TOKEN, PATCH_START_TOKEN, PATCH_END_TOKEN, PATCH_CONTEXT_TOKEN, IMG_TAG_TOKEN, VID_TAG_TOKEN
image_tag = "<image>"
video_tag = "<video>"
IMG_CONTEXT_ID = tokenizer(IMG_CONTEXT_TOKEN, add_special_tokens=False).input_ids
IMG_START_ID = tokenizer(IMG_START_TOKEN, add_special_tokens=False).input_ids
IMG_END_ID = tokenizer(IMG_END_TOKEN, add_special_tokens=False).input_ids
VID_CONTEXT_ID = tokenizer(VID_CONTEXT_TOKEN, add_special_tokens=False).input_ids
VID_START_ID = tokenizer(VID_START_TOKEN, add_special_tokens=False).input_ids
VID_END_ID = tokenizer(VID_END_TOKEN, add_special_tokens=False).input_ids
PATCH_CONTEXT_ID = tokenizer(PATCH_CONTEXT_TOKEN, add_special_tokens=False).input_ids
PATCH_START_ID = tokenizer(PATCH_START_TOKEN, add_special_tokens=False).input_ids
PATCH_END_ID = tokenizer(PATCH_END_TOKEN, add_special_tokens=False).input_ids
IMG_TAG_ID = tokenizer(IMG_TAG_TOKEN, add_special_tokens=False).input_ids
VID_TAG_ID = tokenizer(VID_TAG_TOKEN, add_special_tokens=False).input_ids
assert len(IMG_CONTEXT_ID) == 1
assert len(IMG_START_ID) == 1
assert len(IMG_END_ID) == 1
assert len(VID_CONTEXT_ID) == 1
assert len(VID_START_ID) == 1
assert len(VID_END_ID) == 1
assert len(PATCH_CONTEXT_ID) == 1
assert len(PATCH_START_ID) == 1
assert len(PATCH_END_ID) == 1
IMG_CONTEXT_ID = IMG_CONTEXT_ID[0]
IMG_START_ID = IMG_START_ID[0]
IMG_END_ID = IMG_END_ID[0]
VID_CONTEXT_ID = VID_CONTEXT_ID[0]
VID_START_ID = VID_START_ID[0]
VID_END_ID = VID_END_ID[0]
PATCH_CONTEXT_ID = PATCH_CONTEXT_ID[0]
PATCH_START_ID = PATCH_START_ID[0]
PATCH_END_ID = PATCH_END_ID[0]
IMG_TAG_ID = IMG_TAG_ID[0]
VID_TAG_ID = VID_TAG_ID[0]
nl_tokens = tokenizer("\n", add_special_tokens=False).input_ids
image_indices = []
images = []
# ----------------------------------------------------------------
# image
for batch_idx, input_ids in enumerate(tokens):
# img_positions = [i for i, x in enumerate(input_ids) if x == IMG_CONTEXT_ID]
img_positions = [i for i, x in enumerate(input_ids) if x == IMG_TAG_ID]
if len(img_positions) == 0:
continue
if image_path_list is not None:
assert len(img_positions) == len(image_path_list), f"{img_positions} {image_path_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}"
if image_list is not None:
assert len(img_positions) == len(image_list), f"{img_positions} {image_list} {IMG_CONTEXT_TOKEN} {IMG_CONTEXT_ID} {tokens}"
new_input_ids = []
st = 0
for img_idx, img_pos in enumerate(img_positions):
if image_path_list is not None:
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_path_list[img_idx])
if image_list is not None:
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(image_list[img_idx])
images.append(image_patches)
print(f"get_external_inputs best_width {best_width} best_height {best_height}")
new_input_ids += input_ids[st:img_pos]
new_input_ids += [IMG_START_ID]
image_indice_b = torch.zeros(
1, image_token_length, dtype=torch.int64
) # This will change in collate_fn
image_indice_s = (
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
.unsqueeze(0)
.repeat(1, 1)
)
image_indice_b_s = torch.stack(
[image_indice_b, image_indice_s], dim=0
) # 2, num_image, image_length
image_indices.append(image_indice_b_s)
new_input_ids += [IMG_CONTEXT_ID] * image_token_length
new_input_ids += [IMG_END_ID]
if len(image_patches) > 1:
for i in range(0, best_height, image_processor.patch_size):
new_input_ids += nl_tokens
for j in range(0, best_width, image_processor.patch_size):
new_input_ids += [PATCH_START_ID]
image_indice_b = torch.zeros(
1, image_token_length, dtype=torch.int64
) # This will change in collate_fn
image_indice_s = (
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
.unsqueeze(0)
.repeat(1, 1)
)
image_indice_b_s = torch.stack(
[image_indice_b, image_indice_s], dim=0
) # 2, num_image, image_length
image_indices.append(image_indice_b_s)
new_input_ids += [PATCH_CONTEXT_ID] * image_token_length
new_input_ids += [PATCH_END_ID]
# print(f"get_external_dict i {i} j {j} new_input_ids {len(new_input_ids)}")
st = img_pos + 1
new_input_ids += input_ids[st:]
input_ids = new_input_ids
tokens[batch_idx] = input_ids
# ----------------------------------------------------------------
# video
for batch_idx, input_ids in enumerate(tokens):
# vid_positions = [i for i, x in enumerate(input_ids) if x == VID_CONTEXT_ID]
vid_positions = [i for i, x in enumerate(input_ids) if x == VID_TAG_ID]
if len(vid_positions) == 0:
continue
if video_path_list is not None:
assert len(vid_positions) == len(video_path_list), f"{vid_positions} {video_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}"
if image_path_list is not None:
assert len(vid_positions) == len(image_path_list), f"{vid_positions} {image_path_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}"
if image_list is not None:
assert len(vid_positions) == len(image_list), f"{vid_positions} {image_list} {VID_CONTEXT_TOKEN} {VID_CONTEXT_ID} {tokens}"
new_input_ids = []
st = 0
for vid_idx, vid_pos in enumerate(vid_positions):
if video_path_list is not None:
video_frames, _ = image_processor.process_video(video_path_list[vid_idx], max_num_frame, max_fps)
if image_path_list is not None:
video_frames = image_processor.process_images([image_path_list[vid_idx]])
if image_list is not None:
video_frames = image_processor.process_images([image_list[vid_idx]])
images.append(video_frames)
new_input_ids += input_ids[st:vid_pos]
for _ in video_frames:
new_input_ids += [VID_START_ID]
image_indice_b = torch.zeros(
1, image_token_length, dtype=torch.int64
) # This will change in collate_fn
image_indice_s = (
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
.unsqueeze(0)
.repeat(1, 1)
)
image_indice_b_s = torch.stack(
[image_indice_b, image_indice_s], dim=0
) # 2, num_image, image_length
image_indices.append(image_indice_b_s)
new_input_ids += [VID_CONTEXT_ID] * image_token_length
new_input_ids += [VID_END_ID]
st = vid_pos + 1
new_input_ids += input_ids[st:]
input_ids = new_input_ids
tokens[batch_idx] = input_ids
if len(images) > 0:
images = torch.cat(images, dim=0)
image_indices = torch.cat(image_indices, dim=1)
image_indices = image_indices.contiguous().to(torch.cuda.current_device())
if True:
images = torch.tensor(images, dtype=torch.bfloat16).contiguous().to(torch.cuda.current_device())
else:
images = torch.tensor(images, dtype=torch.float16).contiguous().to(torch.cuda.current_device())
print(f"get_external_inputs images {images.size()}")
print(f"get_external_inputs image_indices {image_indices.size()}")
else:
images = None
image_indices = None
print(f"get_external_inputs images {images}")
print(f"get_external_inputs image_indices {image_indices}")
tokens = torch.tensor(tokens, dtype=torch.long, device='cuda')
print(f"get_external_inputs tokens {tokens.size()}")
return tokens, images, image_indices
##############################################################
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
import importlib
if importlib.util.find_spec("torch_npu") is not None:
print("Loading torch_npu")
import torch_npu
from torch_npu.contrib import transfer_to_npu
# torch.npu.set_compile_mode(jit_compile=True)
import sys
import os
import natsort
import gradio as gr
import spaces
torch.manual_seed(1234)
model_name_or_path = "VITA-MLLM/Long-VITA-128K_HF"
device_map = "auto"
# device_map = "npu:0"
# torch_dtype=torch.float16
torch_dtype=torch.bfloat16
# torch_dtype=torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
print("tokenizer", tokenizer)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
trust_remote_code=True,
device_map=device_map,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
).eval()
# print("model", model)
model.generation_config = GenerationConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
model.generation_config.max_new_tokens = 1024
model.generation_config.chat_format = "chatml"
model.generation_config.max_window_size = 1310720
model.generation_config.do_sample = False
model.generation_config.use_cache = True
model.generation_config.pad_token_id = tokenizer.pad_token_id
# from cognitron_vl.data.processor.image_processor import ImageProcessor
image_processor = ImageProcessor(
process_type="dynamic",
image_size=448,
normalize_type="imagenet",
min_patch_grid=1,
max_patch_grid=12,
)
@spaces.GPU(duration=120)
def inference_model(messages, image_path_list, video_path_list):
default_system_message = [
{
"role": "system",
"content": "You are a helpful AI assistant.",
}
]
messages = default_system_message + messages
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
)
# .to("cuda")
print("input", tokenizer.decode(inputs[0], skip_special_tokens=False), flush=True)
inputs, images, image_indices = get_external_inputs(inputs, image_path_list=image_path_list, video_path_list=video_path_list)
# inputs = inputs.to("cuda")
# images = images.to("cuda")
# image_indices = image_indices.to("cuda")
outputs = model.generate(inputs=inputs, images=images, image_indices=image_indices)
# output = tokenizer.decode(outputs[0], skip_special_tokens=False)
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
print(f"output {output}", flush=True)
return output
import time
import filetype
font_size = "2.5em"
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
<span style="display: inline-block; vertical-align: middle;">{model_name_or_path.split('/')[-1]}</span>
</p>
<center>
<font size=3>
<p>
<b>Long-VITA</b> has been fully open-sourced on <a href='https://huggingface.co./VITA-MLLM'>😊 Huggingface</a> and <a href='https://github.com/VITA-MLLM/Long-VITA'>🌟 GitHub</a>. If you find Long-VITA useful, a like❤️ or a star🌟 would be appreciated.
</p>
</font>
<font size=3>
<p>
If the model does not respond or the demo shows errors, it could be <b>out of memory</b>.
</p>
</font>
</center>
"""
def add_message(history, message):
for x in message["files"]:
history.append({"role": "user", "content": {"path": x}})
if message["text"] is not None:
history.append({"role": "user", "content": message["text"]})
return history, gr.MultimodalTextbox(value=None, interactive=False)
def bot(history: list):
print("#" * 100)
messages = []
image_path_list = []
video_path_list = []
for message in history:
# print(f"message {message}")
role = message["role"]
content = message["content"]
if isinstance(content, str):
if len(messages) == 0 or messages[-1]["role"] != role:
messages.append(
{
"role": role,
"content": "",
}
)
messages[-1]["content"] = messages[-1]["content"] + content
else:
for filepath in content:
if filetype.is_image(filepath):
# print(f"{filepath} is a valid image...")
if len(messages) == 0 or messages[-1]["role"] != role:
messages.append(
{
"role": role,
"content": "",
}
)
messages[-1]["content"] = "<image>" + messages[-1]["content"]
image_path_list.append(filepath)
elif filetype.is_video(filepath):
# print(f"{filepath} is a valid video...")
if len(messages) == 0 or messages[-1]["role"] != role:
messages.append(
{
"role": role,
"content": "",
}
)
messages[-1]["content"] = "<video>" + messages[-1]["content"]
video_path_list.append(filepath)
print(f"messages {messages}")
print(f"image_path_list {image_path_list}")
print(f"video_path_list {video_path_list}")
if len(image_path_list) == 0:
image_path_list = None
if len(video_path_list) == 0:
video_path_list = None
output = inference_model(messages, image_path_list, video_path_list)
history.append({"role": "assistant", "content": output})
return history
with gr.Blocks(title=model_name_or_path.split('/')[-1] + "🔥🚀🔥", theme=gr.themes.Ocean()) as demo:
gr.HTML(html)
with gr.Row():
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", bubble_full_width=False, height=600)
with gr.Row():
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
file_types=['image', 'video'],
placeholder="Enter message or upload file...",
show_label=False,
# sources=["microphone", "upload"],
sources=["upload"],
)
chat_msg = chat_input.submit(
add_message, [chatbot, chat_input], [chatbot, chat_input]
)
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
demo.launch(
show_error=True,
)
|