sflindrs's picture
Update app.py
d8277be verified
raw
history blame
8.04 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
import spaces
import json
import re
import deepl
# Load the processor and model
processor = AutoProcessor.from_pretrained(
'allenai/Molmo-7B-D-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
model = AutoModelForCausalLM.from_pretrained(
'allenai/Molmo-7B-D-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
@spaces.GPU()
def wrap_json_in_markdown(text):
result = []
stack = []
json_start = None
in_json = False
i = 0
while i < len(text):
char = text[i]
if char in ['{', '[']:
if not in_json:
json_start = i
in_json = True
stack.append(char)
else:
stack.append(char)
elif char in ['}', ']'] and in_json:
if not stack:
# Unbalanced bracket, reset
in_json = False
json_start = None
else:
last = stack.pop()
if (last == '{' and char != '}') or (last == '[' and char != ']'):
# Mismatched brackets
in_json = False
json_start = None
if in_json and not stack:
# Potential end of JSON
json_str = text[json_start:i+1]
try:
# Try to parse the JSON to ensure it's valid
parsed = json.loads(json_str)
# Wrap in Markdown code block
wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n"
result.append(text[:json_start]) # Append text before JSON
result.append(wrapped) # Append wrapped JSON
text = text[i+1:] # Update the remaining text
i = -1 # Reset index
except json.JSONDecodeError:
# Not valid JSON, continue searching
pass
in_json = False
json_start = None
i += 1
result.append(text) # Append any remaining text
return ''.join(result)
def decode_unicode_sequences(unicode_seq):
"""
Decodes a sequence of Unicode escape sequences (e.g., \\u4F60\\u597D) to actual characters.
Args:
unicode_seq (str): A string containing Unicode escape sequences.
Returns:
str: The decoded Unicode string.
"""
# Regular expression to find \uXXXX
unicode_escape_pattern = re.compile(r'\\u([0-9a-fA-F]{4})')
# Function to replace each \uXXXX with the corresponding character
def replace_match(match):
hex_value = match.group(1)
return chr(int(hex_value, 16))
# Decode all \uXXXX sequences
decoded = unicode_escape_pattern.sub(replace_match, unicode_seq)
return decoded
def is_mandarin(text):
"""
Detects if the given text is in Mandarin using Unicode ranges.
Args:
text (str): The text to check.
Returns:
bool: True if the text contains Chinese characters, False otherwise.
"""
# Chinese Unicode ranges
for char in text:
if '\u4e00' <= char <= '\u9fff':
return True
return False
def translate_to_english_deepl(text, api_key):
"""
Translates Mandarin text to English using DeepL API.
Args:
text (str): The Mandarin text to translate.
api_key (str): Your DeepL API authentication key.
Returns:
str: The translated English text.
"""
url = "https://api.deepl.com/v2/translate"
params = {
"auth_key": api_key,
"text": text,
"source_lang": "ZH",
"target_lang": "EN"
}
# try:
# response = requests.post(url, data=params)
# response.raise_for_status()
# result = response.json()
# return result['translations'][0]['text']
# except requests.exceptions.RequestException as e:
# print(f"DeepL Translation error: {e}")
# return text # Return the original text if translation fails
# auth_key = api_key # Replace with your key
# translator = deepl.Translator(auth_key)
# result = translator.translate_text("Hello, world!", target_lang="FR")
# print(result.text) # "Bonjour, le monde !"
try:
auth_key = api_key # Replace with your key
translator = deepl.Translator(auth_key)
result = translator.translate_text(text, source_lang="ZH", target_lang="EN-US")
# print(result.text)
return result.text
except requests.exceptions.RequestException as e:
print(f"DeepL Translation error: {e}")
return text # Return the original text if translation fails
def process_text_deepl(input_string, api_key):
"""
Processes the input string to find Unicode escape sequences representing Mandarin words,
translates them to English using DeepL, and replaces them accordingly.
Args:
input_string (str): The original string containing Unicode escape sequences.
api_key (str): Your DeepL API authentication key.
Returns:
str: The processed string with translations where applicable.
"""
# Regular expression to find groups of consecutive \uXXXX sequences
unicode_word_pattern = re.compile(r'(?:\\u[0-9a-fA-F]{4})+')
# Function to process each matched Unicode word
def process_match(match):
unicode_seq = match.group(0)
decoded_word = decode_unicode_sequences(unicode_seq)
if is_mandarin(decoded_word):
translated = translate_to_english_deepl(decoded_word, api_key)
return f"{translated} ({decoded_word})"
else:
# If not Mandarin, return the original sequence
return unicode_seq
# Substitute all matched Unicode words with their translations if applicable
processed_string = unicode_word_pattern.sub(process_match, input_string)
return processed_string
def process_image_and_text(image, text):
# Process the image and text
inputs = processor.process(
images=[Image.fromarray(image)],
text=text
)
# Move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# Generate output
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text)
generated_text_w_unicode_mdn = process_text_deepl(generated_text_w_json_wrapper, "a5b1749b-7112-4c2d-81a3-33ea18478bb4:fx")
return generated_text_w_json_wrapper
def chatbot(image, text, history):
if image is None:
return history + [("Please upload an image first.", None)]
response = process_image_and_text(image, text)
history.append({"role": "user", "content": text})
history.append({"role": "assistant", "content": response})
return history
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
with gr.Row():
image_input = gr.Image(type="numpy")
chatbot_output = gr.Chatbot(type="messages")
text_input = gr.Textbox(placeholder="Ask a question about the image...")
submit_button = gr.Button("Submit")
state = gr.State([])
submit_button.click(
chatbot,
inputs=[image_input, text_input, state],
outputs=[chatbot_output]
)
text_input.submit(
chatbot,
inputs=[image_input, text_input, state],
outputs=[chatbot_output]
)
demo.launch()