File size: 8,042 Bytes
259d504
 
 
 
53afe5a
4bf5dae
8fbe1d5
4d90ea3
259d504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e39399
4bf5dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53afe5a
8fbe1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d90ea3
8fbe1d5
 
 
 
 
4d90ea3
8fbe1d5
4d90ea3
 
 
 
 
8fbe1d5
4d90ea3
8fbe1d5
4d90ea3
8fbe1d5
 
 
4d90ea3
8fbe1d5
 
 
 
4d90ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fbe1d5
4d90ea3
 
 
 
 
 
 
8fbe1d5
 
4d90ea3
8fbe1d5
 
4d90ea3
8fbe1d5
 
 
4d90ea3
8fbe1d5
 
 
 
 
 
 
 
 
 
 
 
 
4d90ea3
8fbe1d5
 
 
 
 
 
 
 
 
259d504
 
 
 
 
 
 
 
 
 
 
 
 
5bfb146
259d504
 
 
 
 
 
d8277be
 
4bf5dae
2e39399
259d504
1310d0e
259d504
86f16e5
259d504
 
e62a54b
05a348e
5ee2847
86f16e5
259d504
 
 
 
 
 
 
37dfdda
259d504
 
 
 
 
 
 
 
 
37dfdda
259d504
 
 
 
 
37dfdda
259d504
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
import spaces
import json
import re
import deepl

# Load the processor and model
processor = AutoProcessor.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

model = AutoModelForCausalLM.from_pretrained(
    'allenai/Molmo-7B-D-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

@spaces.GPU()
def wrap_json_in_markdown(text):
    result = []
    stack = []
    json_start = None
    in_json = False
    i = 0
    while i < len(text):
        char = text[i]
        if char in ['{', '[']:
            if not in_json:
                json_start = i
                in_json = True
                stack.append(char)
            else:
                stack.append(char)
        elif char in ['}', ']'] and in_json:
            if not stack:
                # Unbalanced bracket, reset
                in_json = False
                json_start = None
            else:
                last = stack.pop()
                if (last == '{' and char != '}') or (last == '[' and char != ']'):
                    # Mismatched brackets
                    in_json = False
                    json_start = None
        if in_json and not stack:
            # Potential end of JSON
            json_str = text[json_start:i+1]
            try:
                # Try to parse the JSON to ensure it's valid
                parsed = json.loads(json_str)
                # Wrap in Markdown code block
                wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n"
                result.append(text[:json_start])  # Append text before JSON
                result.append(wrapped)           # Append wrapped JSON
                text = text[i+1:]                # Update the remaining text
                i = -1                           # Reset index
            except json.JSONDecodeError:
                # Not valid JSON, continue searching
                pass
            in_json = False
            json_start = None
        i += 1
    result.append(text)  # Append any remaining text
    return ''.join(result)

def decode_unicode_sequences(unicode_seq):
    """
    Decodes a sequence of Unicode escape sequences (e.g., \\u4F60\\u597D) to actual characters.

    Args:
        unicode_seq (str): A string containing Unicode escape sequences.

    Returns:
        str: The decoded Unicode string.
    """
    # Regular expression to find \uXXXX
    unicode_escape_pattern = re.compile(r'\\u([0-9a-fA-F]{4})')
    
    # Function to replace each \uXXXX with the corresponding character
    def replace_match(match):
        hex_value = match.group(1)
        return chr(int(hex_value, 16))
    
    # Decode all \uXXXX sequences
    decoded = unicode_escape_pattern.sub(replace_match, unicode_seq)
    return decoded

def is_mandarin(text):
    """
    Detects if the given text is in Mandarin using Unicode ranges.

    Args:
        text (str): The text to check.

    Returns:
        bool: True if the text contains Chinese characters, False otherwise.
    """
    # Chinese Unicode ranges
    for char in text:
        if '\u4e00' <= char <= '\u9fff':
            return True
    return False

def translate_to_english_deepl(text, api_key):
    """
    Translates Mandarin text to English using DeepL API.

    Args:
        text (str): The Mandarin text to translate.
        api_key (str): Your DeepL API authentication key.

    Returns:
        str: The translated English text.
    """
    url = "https://api.deepl.com/v2/translate"
    params = {
        "auth_key": api_key,
        "text": text,
        "source_lang": "ZH",
        "target_lang": "EN"
    }
    
    # try:
    #     response = requests.post(url, data=params)
    #     response.raise_for_status()
    #     result = response.json()
    #     return result['translations'][0]['text']
    # except requests.exceptions.RequestException as e:
    #     print(f"DeepL Translation error: {e}")
    #     return text  # Return the original text if translation fails

    # auth_key = api_key  # Replace with your key
    # translator = deepl.Translator(auth_key)

    # result = translator.translate_text("Hello, world!", target_lang="FR")
    # print(result.text)  # "Bonjour, le monde !"

    try:
        auth_key = api_key  # Replace with your key
        translator = deepl.Translator(auth_key)
        result = translator.translate_text(text, source_lang="ZH", target_lang="EN-US")
        # print(result.text)
        return result.text
    except requests.exceptions.RequestException as e:
        print(f"DeepL Translation error: {e}")
        return text  # Return the original text if translation fails

def process_text_deepl(input_string, api_key):
    """
    Processes the input string to find Unicode escape sequences representing Mandarin words,
    translates them to English using DeepL, and replaces them accordingly.

    Args:
        input_string (str): The original string containing Unicode escape sequences.
        api_key (str): Your DeepL API authentication key.

    Returns:
        str: The processed string with translations where applicable.
    """
    # Regular expression to find groups of consecutive \uXXXX sequences
    unicode_word_pattern = re.compile(r'(?:\\u[0-9a-fA-F]{4})+')
    
    # Function to process each matched Unicode word
    def process_match(match):
        unicode_seq = match.group(0)
        decoded_word = decode_unicode_sequences(unicode_seq)
        
        if is_mandarin(decoded_word):
            translated = translate_to_english_deepl(decoded_word, api_key)
            return f"{translated} ({decoded_word})"
        else:
            # If not Mandarin, return the original sequence
            return unicode_seq
    
    # Substitute all matched Unicode words with their translations if applicable
    processed_string = unicode_word_pattern.sub(process_match, input_string)
    return processed_string

def process_image_and_text(image, text):
    # Process the image and text
    inputs = processor.process(
        images=[Image.fromarray(image)],
        text=text
    )

    # Move inputs to the correct device and make a batch of size 1
    inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}

    # Generate output
    output = model.generate_from_batch(
        inputs,
        GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
        tokenizer=processor.tokenizer
    )

    # Only get generated tokens; decode them to text
    generated_tokens = output[0, inputs['input_ids'].size(1):]
    generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
    generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text)
    generated_text_w_unicode_mdn = process_text_deepl(generated_text_w_json_wrapper, "a5b1749b-7112-4c2d-81a3-33ea18478bb4:fx")
    
    return generated_text_w_json_wrapper

def chatbot(image, text, history):
    if image is None:
        return history + [("Please upload an image first.", None)]

    response = process_image_and_text(image, text)

    history.append({"role": "user", "content": text})
    history.append({"role": "assistant", "content": response})
    return history

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
    
    with gr.Row():
        image_input = gr.Image(type="numpy")
        chatbot_output = gr.Chatbot(type="messages")
    
    text_input = gr.Textbox(placeholder="Ask a question about the image...")
    submit_button = gr.Button("Submit")

    state = gr.State([])

    submit_button.click(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

    text_input.submit(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

demo.launch()