Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,042 Bytes
259d504 53afe5a 4bf5dae 8fbe1d5 4d90ea3 259d504 2e39399 4bf5dae 53afe5a 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 4d90ea3 8fbe1d5 259d504 5bfb146 259d504 d8277be 4bf5dae 2e39399 259d504 1310d0e 259d504 86f16e5 259d504 e62a54b 05a348e 5ee2847 86f16e5 259d504 37dfdda 259d504 37dfdda 259d504 37dfdda 259d504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
import spaces
import json
import re
import deepl
# Load the processor and model
processor = AutoProcessor.from_pretrained(
'allenai/Molmo-7B-D-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
model = AutoModelForCausalLM.from_pretrained(
'allenai/Molmo-7B-D-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
@spaces.GPU()
def wrap_json_in_markdown(text):
result = []
stack = []
json_start = None
in_json = False
i = 0
while i < len(text):
char = text[i]
if char in ['{', '[']:
if not in_json:
json_start = i
in_json = True
stack.append(char)
else:
stack.append(char)
elif char in ['}', ']'] and in_json:
if not stack:
# Unbalanced bracket, reset
in_json = False
json_start = None
else:
last = stack.pop()
if (last == '{' and char != '}') or (last == '[' and char != ']'):
# Mismatched brackets
in_json = False
json_start = None
if in_json and not stack:
# Potential end of JSON
json_str = text[json_start:i+1]
try:
# Try to parse the JSON to ensure it's valid
parsed = json.loads(json_str)
# Wrap in Markdown code block
wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n"
result.append(text[:json_start]) # Append text before JSON
result.append(wrapped) # Append wrapped JSON
text = text[i+1:] # Update the remaining text
i = -1 # Reset index
except json.JSONDecodeError:
# Not valid JSON, continue searching
pass
in_json = False
json_start = None
i += 1
result.append(text) # Append any remaining text
return ''.join(result)
def decode_unicode_sequences(unicode_seq):
"""
Decodes a sequence of Unicode escape sequences (e.g., \\u4F60\\u597D) to actual characters.
Args:
unicode_seq (str): A string containing Unicode escape sequences.
Returns:
str: The decoded Unicode string.
"""
# Regular expression to find \uXXXX
unicode_escape_pattern = re.compile(r'\\u([0-9a-fA-F]{4})')
# Function to replace each \uXXXX with the corresponding character
def replace_match(match):
hex_value = match.group(1)
return chr(int(hex_value, 16))
# Decode all \uXXXX sequences
decoded = unicode_escape_pattern.sub(replace_match, unicode_seq)
return decoded
def is_mandarin(text):
"""
Detects if the given text is in Mandarin using Unicode ranges.
Args:
text (str): The text to check.
Returns:
bool: True if the text contains Chinese characters, False otherwise.
"""
# Chinese Unicode ranges
for char in text:
if '\u4e00' <= char <= '\u9fff':
return True
return False
def translate_to_english_deepl(text, api_key):
"""
Translates Mandarin text to English using DeepL API.
Args:
text (str): The Mandarin text to translate.
api_key (str): Your DeepL API authentication key.
Returns:
str: The translated English text.
"""
url = "https://api.deepl.com/v2/translate"
params = {
"auth_key": api_key,
"text": text,
"source_lang": "ZH",
"target_lang": "EN"
}
# try:
# response = requests.post(url, data=params)
# response.raise_for_status()
# result = response.json()
# return result['translations'][0]['text']
# except requests.exceptions.RequestException as e:
# print(f"DeepL Translation error: {e}")
# return text # Return the original text if translation fails
# auth_key = api_key # Replace with your key
# translator = deepl.Translator(auth_key)
# result = translator.translate_text("Hello, world!", target_lang="FR")
# print(result.text) # "Bonjour, le monde !"
try:
auth_key = api_key # Replace with your key
translator = deepl.Translator(auth_key)
result = translator.translate_text(text, source_lang="ZH", target_lang="EN-US")
# print(result.text)
return result.text
except requests.exceptions.RequestException as e:
print(f"DeepL Translation error: {e}")
return text # Return the original text if translation fails
def process_text_deepl(input_string, api_key):
"""
Processes the input string to find Unicode escape sequences representing Mandarin words,
translates them to English using DeepL, and replaces them accordingly.
Args:
input_string (str): The original string containing Unicode escape sequences.
api_key (str): Your DeepL API authentication key.
Returns:
str: The processed string with translations where applicable.
"""
# Regular expression to find groups of consecutive \uXXXX sequences
unicode_word_pattern = re.compile(r'(?:\\u[0-9a-fA-F]{4})+')
# Function to process each matched Unicode word
def process_match(match):
unicode_seq = match.group(0)
decoded_word = decode_unicode_sequences(unicode_seq)
if is_mandarin(decoded_word):
translated = translate_to_english_deepl(decoded_word, api_key)
return f"{translated} ({decoded_word})"
else:
# If not Mandarin, return the original sequence
return unicode_seq
# Substitute all matched Unicode words with their translations if applicable
processed_string = unicode_word_pattern.sub(process_match, input_string)
return processed_string
def process_image_and_text(image, text):
# Process the image and text
inputs = processor.process(
images=[Image.fromarray(image)],
text=text
)
# Move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# Generate output
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text)
generated_text_w_unicode_mdn = process_text_deepl(generated_text_w_json_wrapper, "a5b1749b-7112-4c2d-81a3-33ea18478bb4:fx")
return generated_text_w_json_wrapper
def chatbot(image, text, history):
if image is None:
return history + [("Please upload an image first.", None)]
response = process_image_and_text(image, text)
history.append({"role": "user", "content": text})
history.append({"role": "assistant", "content": response})
return history
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Chatbot with Molmo-7B-D-0924")
with gr.Row():
image_input = gr.Image(type="numpy")
chatbot_output = gr.Chatbot(type="messages")
text_input = gr.Textbox(placeholder="Ask a question about the image...")
submit_button = gr.Button("Submit")
state = gr.State([])
submit_button.click(
chatbot,
inputs=[image_input, text_input, state],
outputs=[chatbot_output]
)
text_input.submit(
chatbot,
inputs=[image_input, text_input, state],
outputs=[chatbot_output]
)
demo.launch() |