Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import subprocess | |
import os | |
import shutil | |
import tempfile | |
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
import torch | |
is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ['SPACE_ID'] else False | |
# Install required package | |
def install_flash_attn(): | |
try: | |
print("Installing flash-attn...") | |
# Install flash attention | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
print("flash-attn installed successfully!") | |
except subprocess.CalledProcessError as e: | |
print(f"Failed to install flash-attn: {e}") | |
exit(1) | |
# Install flash-attn | |
install_flash_attn() | |
from huggingface_hub import snapshot_download | |
# Create xcodec_mini_infer folder | |
folder_path = './xcodec_mini_infer' | |
# Create the folder if it doesn't exist | |
if not os.path.exists(folder_path): | |
os.mkdir(folder_path) | |
print(f"Folder created at: {folder_path}") | |
else: | |
print(f"Folder already exists at: {folder_path}") | |
snapshot_download( | |
repo_id = "m-a-p/xcodec_mini_infer", | |
local_dir = "./xcodec_mini_infer" | |
) | |
# Add xcodec_mini_infer and descriptaudiocodec to sys path | |
import sys | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
import argparse | |
import numpy as np | |
import json | |
from omegaconf import OmegaConf | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import soundfile as sf | |
import uuid | |
from tqdm import tqdm | |
from einops import rearrange | |
from codecmanipulator import CodecManipulator | |
from mmtokenizer import _MMSentencePieceTokenizer | |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
import glob | |
import time | |
import copy | |
from collections import Counter | |
from models.soundstream_hubert_new import SoundStream | |
from vocoder import build_codec_model, process_audio | |
from post_process_audio import replace_low_freq_with_energy_matched | |
import re | |
# --- Arguments and Model Loading from infer.py --- | |
parser = argparse.ArgumentParser() | |
# Model Configuration: | |
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.") | |
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.") | |
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.") | |
# Prompt | |
parser.add_argument("--genre_txt", type=str, default="", help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") # Modified: removed required=True and using default="" | |
parser.add_argument("--lyrics_txt", type=str, default="", help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") # Modified: removed required=True and using default="" | |
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.") | |
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.") | |
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.") | |
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.") | |
# Output | |
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.") | |
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.") | |
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.") | |
parser.add_argument("--cuda_idx", type=int, default=0) | |
# Config for xcodec and upsampler | |
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.') | |
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.') | |
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.') | |
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.') | |
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.') | |
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.') | |
args = parser.parse_args([]) # Modified: Pass empty list to parse_args to avoid command line parsing in Gradio | |
if args.use_audio_prompt and not args.audio_prompt_path: | |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") | |
model_name = args.stage1_model # Modified: Renamed 'model' to 'model_name' to avoid shadowing the loaded model later | |
cuda_idx = args.cuda_idx | |
max_new_tokens_config = args.max_new_tokens # Modified: Renamed 'max_new_tokens' to 'max_new_tokens_config' to avoid shadowing the Gradio input | |
stage1_output_dir = os.path.join(args.output_dir, f"stage1") | |
os.makedirs(stage1_output_dir, exist_ok=True) | |
# load tokenizer and model | |
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu") | |
# Now you can use `device` to move your tensors or models to the GPU (if available) | |
print(f"Using device: {device}") | |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
codectool = CodecManipulator("xcodec", 0, 1) | |
model_config = OmegaConf.load(args.basic_model_config) | |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) | |
parameter_dict = torch.load(args.resume_path, map_location='cpu') | |
codec_model.load_state_dict(parameter_dict['codec_model']) | |
codec_model.to(device) | |
codec_model.eval() | |
class BlockTokenRangeProcessor(LogitsProcessor): | |
def __init__(self, start_id, end_id): | |
self.blocked_token_ids = list(range(start_id, end_id)) | |
def __call__(self, input_ids, scores): | |
scores[:, self.blocked_token_ids] = -float("inf") | |
return scores | |
def load_audio_mono(filepath, sampling_rate=16000): | |
audio, sr = torchaudio.load(filepath) | |
# Convert to mono | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
# Resample if needed | |
if sr != sampling_rate: | |
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
audio = resampler(audio) | |
return audio | |
def split_lyrics(lyrics): | |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
segments = re.findall(pattern, lyrics, re.DOTALL) | |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
return structured_lyrics | |
def generate_music(genres, lyrics_content, num_segments_run, max_new_tokens_run): # Modified: Function to encapsulate generation logic | |
stage1_output_set_local = [] # Modified: Local variable to store output paths | |
lyrics = split_lyrics(lyrics_content) | |
# intruction | |
full_lyrics = "\n".join(lyrics) | |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
prompt_texts += lyrics | |
random_id = uuid.uuid4() | |
output_seq = None | |
# Here is suggested decoding config | |
top_p = 0.93 | |
temperature = 1.0 | |
repetition_penalty = 1.2 | |
# special tokens | |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') | |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') | |
raw_output = None | |
# Format text prompt | |
run_n_segments = min(num_segments_run+1, len(lyrics)) # Modified: Use passed num_segments_run | |
print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) | |
global model # Modified: Declare model as global to use the loaded model in Gradio scope | |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): | |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
guidance_scale = 1.5 if i <=1 else 1.2 | |
if i==0: | |
continue | |
if i==1: | |
if args.use_audio_prompt: | |
audio_prompt = load_audio_mono(args.audio_prompt_path) | |
audio_prompt.unsqueeze_(0) | |
with torch.no_grad(): | |
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
raw_codes = raw_codes.transpose(0, 1) | |
raw_codes = raw_codes.cpu().numpy().astype(np.int16) | |
# Format audio prompt | |
code_ids = codectool.npy2ids(raw_codes[0]) | |
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec | |
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] | |
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") | |
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids | |
else: | |
head_id = mmtokenizer.tokenize(prompt_texts[0]) | |
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
else: | |
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) | |
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids | |
# Use window slicing in case output sequence exceeds the context of model | |
max_context = 16384-max_new_tokens_config-1 # Modified: Use max_new_tokens_config | |
if input_ids.shape[-1] > max_context: | |
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') | |
input_ids = input_ids[:, -(max_context):] | |
with torch.no_grad(): | |
output_seq = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens_run, # Modified: Use max_new_tokens_run | |
min_new_tokens=100, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
eos_token_id=mmtokenizer.eoa, | |
pad_token_id=mmtokenizer.eoa, | |
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), | |
guidance_scale=guidance_scale, | |
) | |
if output_seq[0][-1].item() != mmtokenizer.eoa: | |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) | |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
if i > 1: | |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) | |
else: | |
raw_output = output_seq | |
print(len(raw_output)) | |
# save raw output and check sanity | |
ids = raw_output[0].cpu().numpy() | |
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
if len(soa_idx)!=len(eoa_idx): | |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') | |
vocals = [] | |
instrumentals = [] | |
range_begin = 1 if args.use_audio_prompt else 0 | |
for i in range(range_begin, len(soa_idx)): | |
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] | |
if codec_ids[0] == 32016: | |
codec_ids = codec_ids[1:] | |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0]) | |
vocals.append(vocals_ids) | |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1]) | |
instrumentals.append(instrumentals_ids) | |
vocals = np.concatenate(vocals, axis=1) | |
instrumentals = np.concatenate(instrumentals, axis=1) | |
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_vocal_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename | |
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_instrumental_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename | |
np.save(vocal_save_path, vocals) | |
np.save(inst_save_path, instrumentals) | |
stage1_output_set_local.append(vocal_save_path) | |
stage1_output_set_local.append(inst_save_path) | |
# offload model - Removed offloading for gradio integration to keep model loaded | |
# if not args.disable_offload_model: | |
# model.cpu() | |
# del model | |
# torch.cuda.empty_cache() | |
print("Converting to Audio...") | |
# convert audio tokens to audio | |
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): | |
folder_path = os.path.dirname(path) | |
if not os.path.exists(folder_path): | |
os.makedirs(folder_path) | |
limit = 0.99 | |
max_val = wav.abs().max() | |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) | |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) | |
# reconstruct tracks | |
recons_output_dir = os.path.join(args.output_dir, "recons") | |
recons_mix_dir = os.path.join(recons_output_dir, 'mix') | |
os.makedirs(recons_mix_dir, exist_ok=True) | |
tracks = [] | |
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local | |
codec_result = np.load(npy) | |
decodec_rlt=[] | |
with torch.no_grad(): | |
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) | |
decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
decodec_rlt.append(torch.as_tensor(decoded_waveform)) | |
decodec_rlt = torch.cat(decodec_rlt, dim=-1) | |
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") | |
tracks.append(save_path) | |
save_audio(decodec_rlt, save_path, 16000) | |
# mix tracks | |
for inst_path in tracks: | |
try: | |
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ | |
and 'instrumental' in inst_path: | |
# find pair | |
vocal_path = inst_path.replace('instrumental', 'vocal') | |
if not os.path.exists(vocal_path): | |
continue | |
# mix | |
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) | |
vocal_stem, sr = sf.read(inst_path) | |
instrumental_stem, _ = sf.read(vocal_path) | |
mix_stem = (vocal_stem + instrumental_stem) / 1 | |
sf.write(recons_mix, mix_stem, sr) | |
except Exception as e: | |
print(e) | |
# vocoder to upsample audios | |
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path) | |
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder') | |
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') | |
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') | |
os.makedirs(vocoder_mix_dir, exist_ok=True) | |
os.makedirs(vocoder_stems_dir, exist_ok=True) | |
instrumental_output = None # Initialize outside try block | |
vocal_output = None # Initialize outside try block | |
recons_mix_path = "" # Initialize outside try block | |
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local | |
if 'instrumental' in npy: | |
# Process instrumental | |
instrumental_output = process_audio( | |
npy, | |
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), | |
args.rescale, | |
args, | |
inst_decoder, | |
codec_model | |
) | |
else: | |
# Process vocal | |
vocal_output = process_audio( | |
npy, | |
os.path.join(vocoder_stems_dir, 'vocal.mp3'), | |
args.rescale, | |
args, | |
vocal_decoder, | |
codec_model | |
) | |
# mix tracks | |
try: | |
mix_output = instrumental_output + vocal_output | |
recons_mix_path_temp = os.path.join(recons_mix_dir, os.path.basename(recons_mix)) # Use recons_mix from previous step | |
save_audio(mix_output, recons_mix_path_temp, 44100, args.rescale) | |
print(f"Created mix: {recons_mix_path_temp}") | |
recons_mix_path = recons_mix_path_temp # Assign to outer scope variable | |
except RuntimeError as e: | |
print(e) | |
print(f"mix {recons_mix_path} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") | |
# Post process | |
final_output_path = os.path.join(args.output_dir, os.path.basename(recons_mix_path)) # Use recons_mix_path from previous step | |
replace_low_freq_with_energy_matched( | |
a_file=recons_mix_path, # 16kHz # Use recons_mix_path | |
b_file=recons_mix_path_temp, # 48kHz # Use recons_mix_path_temp | |
c_file=final_output_path, | |
cutoff_freq=5500.0 | |
) | |
print("All process Done") | |
return final_output_path # Modified: Return the final output audio path | |
# Gradio UI | |
model = AutoModelForCausalLM.from_pretrained( # Load model here for Gradio scope | |
"m-a-p/YuE-s1-7B-anneal-en-cot", | |
torch_dtype=torch.float16, | |
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn | |
).to(device).eval() # Modified: Load model globally for Gradio to access | |
def empty_output_folder(output_dir): | |
# List all files in the output directory | |
files = os.listdir(output_dir) | |
# Iterate over the files and remove them | |
for file in files: | |
file_path = os.path.join(output_dir, file) | |
try: | |
if os.path.isdir(file_path): | |
# If it's a directory, remove it recursively | |
shutil.rmtree(file_path) | |
else: | |
# If it's a file, delete it | |
os.remove(file_path) | |
except Exception as e: | |
print(f"Error deleting file {file_path}: {e}") | |
def infer_gradio(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): # Modified: Renamed infer to infer_gradio to avoid conflict | |
# Ensure the output folder exists | |
output_dir = "./output" | |
os.makedirs(output_dir, exist_ok=True) | |
print(f"Output folder ensured at: {output_dir}") | |
empty_output_folder(output_dir) | |
# Call the generation function directly | |
output_audio_path = generate_music(genre_txt_content, lyrics_txt_content, int(num_segments), int(max_new_tokens)) # Modified: Call generate_music and pass num_segments and max_new_tokens as int | |
if output_audio_path and os.path.exists(output_audio_path): | |
print("Generated audio file:", output_audio_path) | |
return output_audio_path | |
else: | |
print("No audio file generated or path is invalid.") | |
return None | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/multimodal-art-projection/YuE"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://map-yue.github.io"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
<a href="https://huggingface.co./spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> | |
<img src="https://huggingface.co./datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
genre_txt = gr.Textbox(label="Genre") | |
lyrics_txt = gr.Textbox(label="Lyrics") | |
with gr.Column(): | |
if is_shared_ui: | |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="3000", step=500, value=500, interactive=True) # increase it after testing | |
else: | |
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True) | |
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True) | |
submit_btn = gr.Button("Submit") | |
music_out = gr.Audio(label="Audio Result") | |
gr.Examples( | |
examples = [ | |
[ | |
"female blues airy vocal bright vocal piano sad romantic guitar jazz", | |
"""[verse] | |
In the quiet of the evening, shadows start to fall | |
Whispers of the night wind echo through the hall | |
Lost within the silence, I hear your gentle voice | |
Guiding me back homeward, making my heart rejoice | |
[chorus] | |
Don't let this moment fade, hold me close tonight | |
With you here beside me, everything's alright | |
Can't imagine life alone, don't want to let you go | |
Stay with me forever, let our love just flow | |
""" | |
], | |
[ | |
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
"""[verse] | |
Woke up in the morning, sun is shining bright | |
Chasing all my dreams, gotta get my mind right | |
City lights are fading, but my vision's clear | |
Got my team beside me, no room for fear | |
Walking through the streets, beats inside my head | |
Every step I take, closer to the bread | |
People passing by, they don't understand | |
Building up my future with my own two hands | |
[chorus] | |
This is my life, and I'm aiming for the top | |
Never gonna quit, no, I'm never gonna stop | |
Through the highs and lows, I'mma keep it real | |
Living out my dreams with this mic and a deal | |
""" | |
] | |
], | |
inputs = [genre_txt, lyrics_txt], | |
outputs = [music_out], | |
cache_examples = False, | |
# cache_mode="lazy", | |
fn=infer_gradio # Modified: Use infer_gradio | |
) | |
submit_btn.click( | |
fn = infer_gradio, # Modified: Use infer_gradio | |
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
outputs = [music_out] | |
) | |
demo.queue().launch(show_api=False, show_error=True) |