Spaces:
Running
on
Zero
Running
on
Zero
modified: app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
-
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
@@ -27,10 +27,10 @@ def install_flash_attn():
|
|
27 |
# Install flash-attn
|
28 |
install_flash_attn()
|
29 |
|
30 |
-
from huggingface_hub import snapshot_download
|
31 |
|
32 |
# Create xcodec_mini_infer folder
|
33 |
-
folder_path = './
|
34 |
|
35 |
# Create the folder if it doesn't exist
|
36 |
if not os.path.exists(folder_path):
|
@@ -41,22 +41,347 @@ else:
|
|
41 |
|
42 |
snapshot_download(
|
43 |
repo_id = "m-a-p/xcodec_mini_infer",
|
44 |
-
local_dir = "./
|
45 |
)
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def empty_output_folder(output_dir):
|
57 |
# List all files in the output directory
|
58 |
files = os.listdir(output_dir)
|
59 |
-
|
60 |
# Iterate over the files and remove them
|
61 |
for file in files:
|
62 |
file_path = os.path.join(output_dir, file)
|
@@ -70,54 +395,8 @@ def empty_output_folder(output_dir):
|
|
70 |
except Exception as e:
|
71 |
print(f"Error deleting file {file_path}: {e}")
|
72 |
|
73 |
-
# Function to create a temporary file with string content
|
74 |
-
def create_temp_file(content, prefix, suffix=".txt"):
|
75 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix)
|
76 |
-
# Ensure content ends with newline and normalize line endings
|
77 |
-
content = content.strip() + "\n\n" # Add extra newline at end
|
78 |
-
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
79 |
-
temp_file.write(content)
|
80 |
-
temp_file.close()
|
81 |
-
|
82 |
-
# Debug: Print file contents
|
83 |
-
print(f"\nContent written to {prefix}{suffix}:")
|
84 |
-
print(content)
|
85 |
-
print("---")
|
86 |
-
|
87 |
-
return temp_file.name
|
88 |
-
|
89 |
-
def get_last_mp3_file(output_dir):
|
90 |
-
# List all files in the output directory
|
91 |
-
files = os.listdir(output_dir)
|
92 |
-
|
93 |
-
# Filter only .mp3 files
|
94 |
-
mp3_files = [file for file in files if file.endswith('.mp3')]
|
95 |
-
|
96 |
-
if not mp3_files:
|
97 |
-
print("No .mp3 files found in the output folder.")
|
98 |
-
return None
|
99 |
-
|
100 |
-
# Get the full path for the mp3 files
|
101 |
-
mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files]
|
102 |
-
|
103 |
-
# Sort the files based on the modification time (most recent first)
|
104 |
-
mp3_files_with_path.sort(key=lambda x: os.path.getmtime(x), reverse=True)
|
105 |
-
|
106 |
-
# Return the most recent .mp3 file
|
107 |
-
return mp3_files_with_path[0]
|
108 |
-
|
109 |
-
device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
|
110 |
-
|
111 |
-
model = AutoModelForCausalLM.from_pretrained(
|
112 |
-
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
113 |
-
torch_dtype=torch.float16,
|
114 |
-
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
115 |
-
)
|
116 |
-
model.to(device)
|
117 |
-
model.eval()
|
118 |
-
|
119 |
@spaces.GPU(duration=120)
|
120 |
-
def
|
121 |
|
122 |
# Ensure the output folder exists
|
123 |
output_dir = "./output"
|
@@ -125,55 +404,17 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=
|
|
125 |
print(f"Output folder ensured at: {output_dir}")
|
126 |
|
127 |
empty_output_folder(output_dir)
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
"
|
137 |
-
# "--stage2_batch_size", "4",
|
138 |
-
"--output_dir", f"{output_dir}",
|
139 |
-
"--cuda_idx", "0",
|
140 |
-
"--max_new_tokens", f"{max_new_tokens}",
|
141 |
-
# "--disable_offload_model"
|
142 |
-
]
|
143 |
-
|
144 |
-
# Set up environment variables for CUDA with optimized settings
|
145 |
-
env = os.environ.copy()
|
146 |
-
|
147 |
-
# Execute the command
|
148 |
-
try:
|
149 |
-
subprocess.run(command, check=True, env=env)
|
150 |
-
print("Command executed successfully!")
|
151 |
-
|
152 |
-
# Check and print the contents of the output folder
|
153 |
-
output_files = os.listdir(output_dir)
|
154 |
-
if output_files:
|
155 |
-
print("Output folder contents:")
|
156 |
-
for file in output_files:
|
157 |
-
print(f"- {file}")
|
158 |
-
|
159 |
-
last_mp3 = get_last_mp3_file(output_dir)
|
160 |
-
|
161 |
-
if last_mp3:
|
162 |
-
print("Last .mp3 file:", last_mp3)
|
163 |
-
return last_mp3
|
164 |
-
else:
|
165 |
-
return None
|
166 |
-
else:
|
167 |
-
print("Output folder is empty.")
|
168 |
-
return None
|
169 |
-
except subprocess.CalledProcessError as e:
|
170 |
-
print(f"Error occurred: {e}")
|
171 |
return None
|
172 |
-
finally:
|
173 |
-
# Clean up temporary files
|
174 |
-
print("Temporary files deleted.")
|
175 |
|
176 |
-
# Gradio
|
177 |
|
178 |
with gr.Blocks() as demo:
|
179 |
with gr.Column():
|
@@ -182,7 +423,7 @@ with gr.Blocks() as demo:
|
|
182 |
<div style="display:flex;column-gap:4px;">
|
183 |
<a href="https://github.com/multimodal-art-projection/YuE">
|
184 |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
185 |
-
</a>
|
186 |
<a href="https://map-yue.github.io">
|
187 |
<img src='https://img.shields.io/badge/Project-Page-green'>
|
188 |
</a>
|
@@ -195,7 +436,7 @@ with gr.Blocks() as demo:
|
|
195 |
with gr.Column():
|
196 |
genre_txt = gr.Textbox(label="Genre")
|
197 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
198 |
-
|
199 |
with gr.Column():
|
200 |
if is_shared_ui:
|
201 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
@@ -242,16 +483,16 @@ Through the highs and lows, I'mma keep it real
|
|
242 |
Living out my dreams with this mic and a deal
|
243 |
"""
|
244 |
]
|
245 |
-
],
|
246 |
inputs = [genre_txt, lyrics_txt],
|
247 |
outputs = [music_out],
|
248 |
cache_examples = False,
|
249 |
# cache_mode="lazy",
|
250 |
-
fn=
|
251 |
)
|
252 |
-
|
253 |
submit_btn.click(
|
254 |
-
fn =
|
255 |
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
256 |
outputs = [music_out]
|
257 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
+
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
|
|
27 |
# Install flash-attn
|
28 |
install_flash_attn()
|
29 |
|
30 |
+
from huggingface_hub import snapshot_download
|
31 |
|
32 |
# Create xcodec_mini_infer folder
|
33 |
+
folder_path = './xcodec_mini_infer'
|
34 |
|
35 |
# Create the folder if it doesn't exist
|
36 |
if not os.path.exists(folder_path):
|
|
|
41 |
|
42 |
snapshot_download(
|
43 |
repo_id = "m-a-p/xcodec_mini_infer",
|
44 |
+
local_dir = "./xcodec_mini_infer"
|
45 |
)
|
46 |
|
47 |
+
# Add xcodec_mini_infer and descriptaudiocodec to sys path
|
48 |
+
import sys
|
49 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
50 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
51 |
+
|
52 |
+
import argparse
|
53 |
+
import numpy as np
|
54 |
+
import json
|
55 |
+
from omegaconf import OmegaConf
|
56 |
+
import torchaudio
|
57 |
+
from torchaudio.transforms import Resample
|
58 |
+
import soundfile as sf
|
59 |
+
|
60 |
+
import uuid
|
61 |
+
from tqdm import tqdm
|
62 |
+
from einops import rearrange
|
63 |
+
from codecmanipulator import CodecManipulator
|
64 |
+
from mmtokenizer import _MMSentencePieceTokenizer
|
65 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
66 |
+
import glob
|
67 |
+
import time
|
68 |
+
import copy
|
69 |
+
from collections import Counter
|
70 |
+
from models.soundstream_hubert_new import SoundStream
|
71 |
+
from vocoder import build_codec_model, process_audio
|
72 |
+
from post_process_audio import replace_low_freq_with_energy_matched
|
73 |
+
import re
|
74 |
+
|
75 |
+
|
76 |
+
# --- Arguments and Model Loading from infer.py ---
|
77 |
+
parser = argparse.ArgumentParser()
|
78 |
+
# Model Configuration:
|
79 |
+
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.")
|
80 |
+
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.")
|
81 |
+
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.")
|
82 |
+
# Prompt
|
83 |
+
parser.add_argument("--genre_txt", type=str, default="", help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.") # Modified: removed required=True and using default=""
|
84 |
+
parser.add_argument("--lyrics_txt", type=str, default="", help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.") # Modified: removed required=True and using default=""
|
85 |
+
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.")
|
86 |
+
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.")
|
87 |
+
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.")
|
88 |
+
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.")
|
89 |
+
# Output
|
90 |
+
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.")
|
91 |
+
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.")
|
92 |
+
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.")
|
93 |
+
parser.add_argument("--cuda_idx", type=int, default=0)
|
94 |
+
# Config for xcodec and upsampler
|
95 |
+
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.')
|
96 |
+
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.')
|
97 |
+
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.')
|
98 |
+
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.')
|
99 |
+
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.')
|
100 |
+
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.')
|
101 |
+
|
102 |
+
|
103 |
+
args = parser.parse_args([]) # Modified: Pass empty list to parse_args to avoid command line parsing in Gradio
|
104 |
+
|
105 |
+
if args.use_audio_prompt and not args.audio_prompt_path:
|
106 |
+
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
107 |
+
model_name = args.stage1_model # Modified: Renamed 'model' to 'model_name' to avoid shadowing the loaded model later
|
108 |
+
cuda_idx = args.cuda_idx
|
109 |
+
max_new_tokens_config = args.max_new_tokens # Modified: Renamed 'max_new_tokens' to 'max_new_tokens_config' to avoid shadowing the Gradio input
|
110 |
+
stage1_output_dir = os.path.join(args.output_dir, f"stage1")
|
111 |
+
os.makedirs(stage1_output_dir, exist_ok=True)
|
112 |
+
|
113 |
+
# load tokenizer and model
|
114 |
+
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
|
115 |
+
|
116 |
+
# Now you can use `device` to move your tensors or models to the GPU (if available)
|
117 |
+
print(f"Using device: {device}")
|
118 |
+
|
119 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
120 |
+
|
121 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
122 |
+
model_config = OmegaConf.load(args.basic_model_config)
|
123 |
+
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
124 |
+
parameter_dict = torch.load(args.resume_path, map_location='cpu')
|
125 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
126 |
+
codec_model.to(device)
|
127 |
+
codec_model.eval()
|
128 |
+
|
129 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
130 |
+
def __init__(self, start_id, end_id):
|
131 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
132 |
+
|
133 |
+
def __call__(self, input_ids, scores):
|
134 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
135 |
+
return scores
|
136 |
+
|
137 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
138 |
+
audio, sr = torchaudio.load(filepath)
|
139 |
+
# Convert to mono
|
140 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
141 |
+
# Resample if needed
|
142 |
+
if sr != sampling_rate:
|
143 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
144 |
+
audio = resampler(audio)
|
145 |
+
return audio
|
146 |
+
|
147 |
+
def split_lyrics(lyrics):
|
148 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
149 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
150 |
+
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
151 |
+
return structured_lyrics
|
152 |
+
|
153 |
+
def generate_music(genres, lyrics_content, num_segments_run, max_new_tokens_run): # Modified: Function to encapsulate generation logic
|
154 |
+
stage1_output_set_local = [] # Modified: Local variable to store output paths
|
155 |
+
|
156 |
+
lyrics = split_lyrics(lyrics_content)
|
157 |
+
# intruction
|
158 |
+
full_lyrics = "\n".join(lyrics)
|
159 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
160 |
+
prompt_texts += lyrics
|
161 |
+
|
162 |
+
random_id = uuid.uuid4()
|
163 |
+
output_seq = None
|
164 |
+
|
165 |
+
# Here is suggested decoding config
|
166 |
+
top_p = 0.93
|
167 |
+
temperature = 1.0
|
168 |
+
repetition_penalty = 1.2
|
169 |
+
# special tokens
|
170 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
171 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
172 |
+
|
173 |
+
raw_output = None
|
174 |
+
|
175 |
+
# Format text prompt
|
176 |
+
run_n_segments = min(num_segments_run+1, len(lyrics)) # Modified: Use passed num_segments_run
|
177 |
+
|
178 |
+
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
|
179 |
+
|
180 |
+
global model # Modified: Declare model as global to use the loaded model in Gradio scope
|
181 |
+
|
182 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
183 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
184 |
+
guidance_scale = 1.5 if i <=1 else 1.2
|
185 |
+
if i==0:
|
186 |
+
continue
|
187 |
+
if i==1:
|
188 |
+
if args.use_audio_prompt:
|
189 |
+
audio_prompt = load_audio_mono(args.audio_prompt_path)
|
190 |
+
audio_prompt.unsqueeze_(0)
|
191 |
+
with torch.no_grad():
|
192 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
193 |
+
raw_codes = raw_codes.transpose(0, 1)
|
194 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
195 |
+
# Format audio prompt
|
196 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
197 |
+
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec
|
198 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
199 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
200 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
201 |
+
else:
|
202 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
203 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
204 |
+
else:
|
205 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
206 |
+
|
207 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
208 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
209 |
+
# Use window slicing in case output sequence exceeds the context of model
|
210 |
+
max_context = 16384-max_new_tokens_config-1 # Modified: Use max_new_tokens_config
|
211 |
+
if input_ids.shape[-1] > max_context:
|
212 |
+
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
213 |
+
input_ids = input_ids[:, -(max_context):]
|
214 |
+
with torch.no_grad():
|
215 |
+
output_seq = model.generate(
|
216 |
+
input_ids=input_ids,
|
217 |
+
max_new_tokens=max_new_tokens_run, # Modified: Use max_new_tokens_run
|
218 |
+
min_new_tokens=100,
|
219 |
+
do_sample=True,
|
220 |
+
top_p=top_p,
|
221 |
+
temperature=temperature,
|
222 |
+
repetition_penalty=repetition_penalty,
|
223 |
+
eos_token_id=mmtokenizer.eoa,
|
224 |
+
pad_token_id=mmtokenizer.eoa,
|
225 |
+
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
226 |
+
guidance_scale=guidance_scale,
|
227 |
+
)
|
228 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
229 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
230 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
231 |
+
if i > 1:
|
232 |
+
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
233 |
+
else:
|
234 |
+
raw_output = output_seq
|
235 |
+
print(len(raw_output))
|
236 |
+
|
237 |
+
# save raw output and check sanity
|
238 |
+
ids = raw_output[0].cpu().numpy()
|
239 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
240 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
241 |
+
if len(soa_idx)!=len(eoa_idx):
|
242 |
+
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
243 |
+
|
244 |
+
vocals = []
|
245 |
+
instrumentals = []
|
246 |
+
range_begin = 1 if args.use_audio_prompt else 0
|
247 |
+
for i in range(range_begin, len(soa_idx)):
|
248 |
+
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
249 |
+
if codec_ids[0] == 32016:
|
250 |
+
codec_ids = codec_ids[1:]
|
251 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
252 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
|
253 |
+
vocals.append(vocals_ids)
|
254 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
|
255 |
+
instrumentals.append(instrumentals_ids)
|
256 |
+
vocals = np.concatenate(vocals, axis=1)
|
257 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
258 |
+
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_vocal_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename
|
259 |
+
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens_run}_instrumental_{random_id}".replace('.', '@')+'.npy') # Modified: Use max_new_tokens_run in filename
|
260 |
+
np.save(vocal_save_path, vocals)
|
261 |
+
np.save(inst_save_path, instrumentals)
|
262 |
+
stage1_output_set_local.append(vocal_save_path)
|
263 |
+
stage1_output_set_local.append(inst_save_path)
|
264 |
+
|
265 |
+
|
266 |
+
# offload model - Removed offloading for gradio integration to keep model loaded
|
267 |
+
# if not args.disable_offload_model:
|
268 |
+
# model.cpu()
|
269 |
+
# del model
|
270 |
+
# torch.cuda.empty_cache()
|
271 |
+
|
272 |
+
print("Converting to Audio...")
|
273 |
+
|
274 |
+
# convert audio tokens to audio
|
275 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
276 |
+
folder_path = os.path.dirname(path)
|
277 |
+
if not os.path.exists(folder_path):
|
278 |
+
os.makedirs(folder_path)
|
279 |
+
limit = 0.99
|
280 |
+
max_val = wav.abs().max()
|
281 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
282 |
+
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
283 |
+
# reconstruct tracks
|
284 |
+
recons_output_dir = os.path.join(args.output_dir, "recons")
|
285 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
286 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
287 |
+
tracks = []
|
288 |
+
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local
|
289 |
+
codec_result = np.load(npy)
|
290 |
+
decodec_rlt=[]
|
291 |
+
with torch.no_grad():
|
292 |
+
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
293 |
+
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
294 |
+
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
295 |
+
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
296 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
297 |
+
tracks.append(save_path)
|
298 |
+
save_audio(decodec_rlt, save_path, 16000)
|
299 |
+
# mix tracks
|
300 |
+
for inst_path in tracks:
|
301 |
+
try:
|
302 |
+
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
303 |
+
and 'instrumental' in inst_path:
|
304 |
+
# find pair
|
305 |
+
vocal_path = inst_path.replace('instrumental', 'vocal')
|
306 |
+
if not os.path.exists(vocal_path):
|
307 |
+
continue
|
308 |
+
# mix
|
309 |
+
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
310 |
+
vocal_stem, sr = sf.read(inst_path)
|
311 |
+
instrumental_stem, _ = sf.read(vocal_path)
|
312 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
313 |
+
sf.write(recons_mix, mix_stem, sr)
|
314 |
+
except Exception as e:
|
315 |
+
print(e)
|
316 |
+
|
317 |
+
# vocoder to upsample audios
|
318 |
+
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path)
|
319 |
+
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder')
|
320 |
+
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
321 |
+
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
322 |
+
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
323 |
+
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
324 |
+
|
325 |
+
instrumental_output = None # Initialize outside try block
|
326 |
+
vocal_output = None # Initialize outside try block
|
327 |
+
recons_mix_path = "" # Initialize outside try block
|
328 |
+
|
329 |
+
|
330 |
+
for npy in stage1_output_set_local: # Modified: Use stage1_output_set_local
|
331 |
+
if 'instrumental' in npy:
|
332 |
+
# Process instrumental
|
333 |
+
instrumental_output = process_audio(
|
334 |
+
npy,
|
335 |
+
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
336 |
+
args.rescale,
|
337 |
+
args,
|
338 |
+
inst_decoder,
|
339 |
+
codec_model
|
340 |
+
)
|
341 |
+
else:
|
342 |
+
# Process vocal
|
343 |
+
vocal_output = process_audio(
|
344 |
+
npy,
|
345 |
+
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
346 |
+
args.rescale,
|
347 |
+
args,
|
348 |
+
vocal_decoder,
|
349 |
+
codec_model
|
350 |
+
)
|
351 |
+
# mix tracks
|
352 |
+
try:
|
353 |
+
mix_output = instrumental_output + vocal_output
|
354 |
+
recons_mix_path_temp = os.path.join(recons_mix_dir, os.path.basename(recons_mix)) # Use recons_mix from previous step
|
355 |
+
save_audio(mix_output, recons_mix_path_temp, 44100, args.rescale)
|
356 |
+
print(f"Created mix: {recons_mix_path_temp}")
|
357 |
+
recons_mix_path = recons_mix_path_temp # Assign to outer scope variable
|
358 |
+
except RuntimeError as e:
|
359 |
+
print(e)
|
360 |
+
print(f"mix {recons_mix_path} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
361 |
+
|
362 |
+
# Post process
|
363 |
+
final_output_path = os.path.join(args.output_dir, os.path.basename(recons_mix_path)) # Use recons_mix_path from previous step
|
364 |
+
replace_low_freq_with_energy_matched(
|
365 |
+
a_file=recons_mix_path, # 16kHz # Use recons_mix_path
|
366 |
+
b_file=recons_mix_path_temp, # 48kHz # Use recons_mix_path_temp
|
367 |
+
c_file=final_output_path,
|
368 |
+
cutoff_freq=5500.0
|
369 |
+
)
|
370 |
+
print("All process Done")
|
371 |
+
return final_output_path # Modified: Return the final output audio path
|
372 |
+
|
373 |
+
|
374 |
+
# Gradio UI
|
375 |
+
model = AutoModelForCausalLM.from_pretrained( # Load model here for Gradio scope
|
376 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot",
|
377 |
+
torch_dtype=torch.float16,
|
378 |
+
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
379 |
+
).to(device).eval() # Modified: Load model globally for Gradio to access
|
380 |
|
381 |
def empty_output_folder(output_dir):
|
382 |
# List all files in the output directory
|
383 |
files = os.listdir(output_dir)
|
384 |
+
|
385 |
# Iterate over the files and remove them
|
386 |
for file in files:
|
387 |
file_path = os.path.join(output_dir, file)
|
|
|
395 |
except Exception as e:
|
396 |
print(f"Error deleting file {file_path}: {e}")
|
397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
@spaces.GPU(duration=120)
|
399 |
+
def infer_gradio(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): # Modified: Renamed infer to infer_gradio to avoid conflict
|
400 |
|
401 |
# Ensure the output folder exists
|
402 |
output_dir = "./output"
|
|
|
404 |
print(f"Output folder ensured at: {output_dir}")
|
405 |
|
406 |
empty_output_folder(output_dir)
|
407 |
+
|
408 |
+
# Call the generation function directly
|
409 |
+
output_audio_path = generate_music(genre_txt_content, lyrics_txt_content, int(num_segments), int(max_new_tokens)) # Modified: Call generate_music and pass num_segments and max_new_tokens as int
|
410 |
+
|
411 |
+
if output_audio_path and os.path.exists(output_audio_path):
|
412 |
+
print("Generated audio file:", output_audio_path)
|
413 |
+
return output_audio_path
|
414 |
+
else:
|
415 |
+
print("No audio file generated or path is invalid.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
return None
|
|
|
|
|
|
|
417 |
|
|
|
418 |
|
419 |
with gr.Blocks() as demo:
|
420 |
with gr.Column():
|
|
|
423 |
<div style="display:flex;column-gap:4px;">
|
424 |
<a href="https://github.com/multimodal-art-projection/YuE">
|
425 |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
|
426 |
+
</a>
|
427 |
<a href="https://map-yue.github.io">
|
428 |
<img src='https://img.shields.io/badge/Project-Page-green'>
|
429 |
</a>
|
|
|
436 |
with gr.Column():
|
437 |
genre_txt = gr.Textbox(label="Genre")
|
438 |
lyrics_txt = gr.Textbox(label="Lyrics")
|
439 |
+
|
440 |
with gr.Column():
|
441 |
if is_shared_ui:
|
442 |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
|
|
|
483 |
Living out my dreams with this mic and a deal
|
484 |
"""
|
485 |
]
|
486 |
+
],
|
487 |
inputs = [genre_txt, lyrics_txt],
|
488 |
outputs = [music_out],
|
489 |
cache_examples = False,
|
490 |
# cache_mode="lazy",
|
491 |
+
fn=infer_gradio # Modified: Use infer_gradio
|
492 |
)
|
493 |
+
|
494 |
submit_btn.click(
|
495 |
+
fn = infer_gradio, # Modified: Use infer_gradio
|
496 |
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
|
497 |
outputs = [music_out]
|
498 |
)
|