Spaces:
Runtime error
Runtime error
import argparse | |
import logging | |
import math | |
import sys | |
from copy import deepcopy | |
from pathlib import Path | |
import torch | |
import torch.nn as nn | |
sys.path.append('./') # to run '$ python *.py' files in subdirectories | |
logger = logging.getLogger(__name__) | |
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, ShuffleV2Block, Concat, NMS, autoShape, StemBlock, BlazeBlock, DoubleBlazeBlock | |
from models.experimental import MixConv2d, CrossConv | |
from utils.autoanchor import check_anchor_order | |
from utils.general import make_divisible, check_file, set_logging | |
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ | |
select_device, copy_attr | |
try: | |
import thop # for FLOPS computation | |
except ImportError: | |
thop = None | |
class Detect(nn.Module): | |
stride = None # strides computed during build | |
export_cat = False # onnx export cat output | |
def __init__(self, nc=80, anchors=(), ch=()): # detection layer | |
super(Detect, self).__init__() | |
self.nc = nc # number of classes | |
#self.no = nc + 5 # number of outputs per anchor | |
self.no = nc + 5 + 10 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [torch.zeros(1)] * self.nl # init grid | |
a = torch.tensor(anchors).float().view(self.nl, -1, 2) | |
self.register_buffer('anchors', a) # shape(nl,na,2) | |
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) | |
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv | |
def forward(self, x): | |
# x = x.copy() # for profiling | |
z = [] # inference output | |
if self.export_cat: | |
for i in range(self.nl): | |
x[i] = self.m[i](x[i]) # conv | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
# self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
self.grid[i], self.anchor_grid[i] = self._make_grid_new(nx, ny,i) | |
y = torch.full_like(x[i], 0) | |
y = y + torch.cat((x[i][:, :, :, :, 0:5].sigmoid(), torch.cat((x[i][:, :, :, :, 5:15], x[i][:, :, :, :, 15:15+self.nc].sigmoid()), 4)), 4) | |
box_xy = (y[:, :, :, :, 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy | |
box_wh = (y[:, :, :, :, 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
# box_conf = torch.cat((box_xy, torch.cat((box_wh, y[:, :, :, :, 4:5]), 4)), 4) | |
landm1 = y[:, :, :, :, 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1 | |
landm2 = y[:, :, :, :, 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x2 y2 | |
landm3 = y[:, :, :, :, 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x3 y3 | |
landm4 = y[:, :, :, :, 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x4 y4 | |
landm5 = y[:, :, :, :, 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x5 y5 | |
# landm = torch.cat((landm1, torch.cat((landm2, torch.cat((landm3, torch.cat((landm4, landm5), 4)), 4)), 4)), 4) | |
# y = torch.cat((box_conf, torch.cat((landm, y[:, :, :, :, 15:15+self.nc]), 4)), 4) | |
y = torch.cat([box_xy, box_wh, y[:, :, :, :, 4:5], landm1, landm2, landm3, landm4, landm5, y[:, :, :, :, 15:15+self.nc]], -1) | |
z.append(y.view(bs, -1, self.no)) | |
return torch.cat(z, 1) | |
for i in range(self.nl): | |
x[i] = self.m[i](x[i]) # conv | |
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) | |
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() | |
if not self.training: # inference | |
if self.grid[i].shape[2:4] != x[i].shape[2:4]: | |
self.grid[i] = self._make_grid(nx, ny).to(x[i].device) | |
y = torch.full_like(x[i], 0) | |
class_range = list(range(5)) + list(range(15,15+self.nc)) | |
y[..., class_range] = x[i][..., class_range].sigmoid() | |
y[..., 5:15] = x[i][..., 5:15] | |
#y = x[i].sigmoid() | |
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy | |
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh | |
#y[..., 5:15] = y[..., 5:15] * 8 - 4 | |
y[..., 5:7] = y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1 | |
y[..., 7:9] = y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x2 y2 | |
y[..., 9:11] = y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x3 y3 | |
y[..., 11:13] = y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x4 y4 | |
y[..., 13:15] = y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x5 y5 | |
#y[..., 5:7] = (y[..., 5:7] * 2 -1) * self.anchor_grid[i] # landmark x1 y1 | |
#y[..., 7:9] = (y[..., 7:9] * 2 -1) * self.anchor_grid[i] # landmark x2 y2 | |
#y[..., 9:11] = (y[..., 9:11] * 2 -1) * self.anchor_grid[i] # landmark x3 y3 | |
#y[..., 11:13] = (y[..., 11:13] * 2 -1) * self.anchor_grid[i] # landmark x4 y4 | |
#y[..., 13:15] = (y[..., 13:15] * 2 -1) * self.anchor_grid[i] # landmark x5 y5 | |
z.append(y.view(bs, -1, self.no)) | |
return x if self.training else (torch.cat(z, 1), x) | |
def _make_grid(nx=20, ny=20): | |
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
def _make_grid_new(self,nx=20, ny=20,i=0): | |
d = self.anchors[i].device | |
if '1.10.0' in torch.__version__: # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility | |
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij') | |
else: | |
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)]) | |
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() | |
anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() | |
return grid, anchor_grid | |
class Model(nn.Module): | |
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes | |
super(Model, self).__init__() | |
if isinstance(cfg, dict): | |
self.yaml = cfg # model dict | |
else: # is *.yaml | |
import yaml # for torch hub | |
self.yaml_file = Path(cfg).name | |
with open(cfg) as f: | |
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict | |
# Define model | |
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels | |
if nc and nc != self.yaml['nc']: | |
logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc)) | |
self.yaml['nc'] = nc # override yaml value | |
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist | |
self.names = [str(i) for i in range(self.yaml['nc'])] # default names | |
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) | |
# Build strides, anchors | |
m = self.model[-1] # Detect() | |
if isinstance(m, Detect): | |
s = 128 # 2x min stride | |
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward | |
m.anchors /= m.stride.view(-1, 1, 1) | |
check_anchor_order(m) | |
self.stride = m.stride | |
self._initialize_biases() # only run once | |
# print('Strides: %s' % m.stride.tolist()) | |
# Init weights, biases | |
initialize_weights(self) | |
self.info() | |
logger.info('') | |
def forward(self, x, augment=False, profile=False): | |
if augment: | |
img_size = x.shape[-2:] # height, width | |
s = [1, 0.83, 0.67] # scales | |
f = [None, 3, None] # flips (2-ud, 3-lr) | |
y = [] # outputs | |
for si, fi in zip(s, f): | |
xi = scale_img(x.flip(fi) if fi else x, si) | |
yi = self.forward_once(xi)[0] # forward | |
# cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save | |
yi[..., :4] /= si # de-scale | |
if fi == 2: | |
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud | |
elif fi == 3: | |
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr | |
y.append(yi) | |
return torch.cat(y, 1), None # augmented inference, train | |
else: | |
return self.forward_once(x, profile) # single-scale inference, train | |
def forward_once(self, x, profile=False): | |
y, dt = [], [] # outputs | |
for m in self.model: | |
if m.f != -1: # if not from previous layer | |
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |
if profile: | |
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS | |
t = time_synchronized() | |
for _ in range(10): | |
_ = m(x) | |
dt.append((time_synchronized() - t) * 100) | |
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type)) | |
x = m(x) # run | |
y.append(x if m.i in self.save else None) # save output | |
if profile: | |
print('%.1fms total' % sum(dt)) | |
return x | |
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency | |
# https://arxiv.org/abs/1708.02002 section 3.3 | |
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. | |
m = self.model[-1] # Detect() module | |
for mi, s in zip(m.m, m.stride): # from | |
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) | |
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) | |
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls | |
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) | |
def _print_biases(self): | |
m = self.model[-1] # Detect() module | |
for mi in m.m: # from | |
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) | |
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) | |
# def _print_weights(self): | |
# for m in self.model.modules(): | |
# if type(m) is Bottleneck: | |
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights | |
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers | |
print('Fusing layers... ') | |
for m in self.model.modules(): | |
if type(m) is Conv and hasattr(m, 'bn'): | |
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv | |
delattr(m, 'bn') # remove batchnorm | |
m.forward = m.fuseforward # update forward | |
elif type(m) is nn.Upsample: | |
m.recompute_scale_factor = None # torch 1.11.0 compatibility | |
self.info() | |
return self | |
def nms(self, mode=True): # add or remove NMS module | |
present = type(self.model[-1]) is NMS # last layer is NMS | |
if mode and not present: | |
print('Adding NMS... ') | |
m = NMS() # module | |
m.f = -1 # from | |
m.i = self.model[-1].i + 1 # index | |
self.model.add_module(name='%s' % m.i, module=m) # add | |
self.eval() | |
elif not mode and present: | |
print('Removing NMS... ') | |
self.model = self.model[:-1] # remove | |
return self | |
def autoshape(self): # add autoShape module | |
print('Adding autoShape... ') | |
m = autoShape(self) # wrap model | |
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes | |
return m | |
def info(self, verbose=False, img_size=640): # print model information | |
model_info(self, verbose, img_size) | |
def parse_model(d, ch): # model_dict, input_channels(3) | |
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) | |
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |
m = eval(m) if isinstance(m, str) else m # eval strings | |
for j, a in enumerate(args): | |
try: | |
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |
except: | |
pass | |
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |
if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, ShuffleV2Block, StemBlock, BlazeBlock, DoubleBlazeBlock]: | |
c1, c2 = ch[f], args[0] | |
# Normal | |
# if i > 0 and args[0] != no: # channel expansion factor | |
# ex = 1.75 # exponential (default 2.0) | |
# e = math.log(c2 / ch[1]) / math.log(2) | |
# c2 = int(ch[1] * ex ** e) | |
# if m != Focus: | |
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 | |
# Experimental | |
# if i > 0 and args[0] != no: # channel expansion factor | |
# ex = 1 + gw # exponential (default 2.0) | |
# ch1 = 32 # ch[1] | |
# e = math.log(c2 / ch1) / math.log(2) # level 1-n | |
# c2 = int(ch1 * ex ** e) | |
# if m != Focus: | |
# c2 = make_divisible(c2, 8) if c2 != no else c2 | |
args = [c1, c2, *args[1:]] | |
if m in [BottleneckCSP, C3]: | |
args.insert(2, n) | |
n = 1 | |
elif m is nn.BatchNorm2d: | |
args = [ch[f]] | |
elif m is Concat: | |
c2 = sum([ch[-1 if x == -1 else x + 1] for x in f]) | |
elif m is Detect: | |
args.append([ch[x + 1] for x in f]) | |
if isinstance(args[1], int): # number of anchors | |
args[1] = [list(range(args[1] * 2))] * len(f) | |
else: | |
c2 = ch[f] | |
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module | |
t = str(m)[8:-2].replace('__main__.', '') # module type | |
np = sum([x.numel() for x in m_.parameters()]) # number params | |
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print | |
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |
layers.append(m_) | |
ch.append(c2) | |
return nn.Sequential(*layers), sorted(save) | |
from thop import profile | |
from thop import clever_format | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
opt = parser.parse_args() | |
opt.cfg = check_file(opt.cfg) # check file | |
set_logging() | |
device = select_device(opt.device) | |
# Create model | |
model = Model(opt.cfg).to(device) | |
stride = model.stride.max() | |
if stride == 32: | |
input = torch.Tensor(1, 3, 480, 640).to(device) | |
else: | |
input = torch.Tensor(1, 3, 512, 640).to(device) | |
model.train() | |
print(model) | |
flops, params = profile(model, inputs=(input, )) | |
flops, params = clever_format([flops, params], "%.3f") | |
print('Flops:', flops, ',Params:' ,params) | |