Gemma-sciling commited on
Commit
edad70f
·
1 Parent(s): 04295ff

Upload 49 files

Browse files
Files changed (49) hide show
  1. models/__init__.py +0 -0
  2. models/__pycache__/__init__.cpython-39.pyc +0 -0
  3. models/__pycache__/common.cpython-39.pyc +0 -0
  4. models/__pycache__/experimental.cpython-39.pyc +0 -0
  5. models/__pycache__/yolo.cpython-39.pyc +0 -0
  6. models/blazeface.yaml +33 -0
  7. models/blazeface_fpn.yaml +38 -0
  8. models/common.py +457 -0
  9. models/experimental.py +133 -0
  10. models/yolo.py +345 -0
  11. models/yolov5l.yaml +47 -0
  12. models/yolov5l6.yaml +60 -0
  13. models/yolov5m.yaml +47 -0
  14. models/yolov5m6.yaml +60 -0
  15. models/yolov5n-0.5.yaml +46 -0
  16. models/yolov5n.yaml +46 -0
  17. models/yolov5n6.yaml +58 -0
  18. models/yolov5s.yaml +47 -0
  19. models/yolov5s6.yaml +60 -0
  20. utils/__init__.py +0 -0
  21. utils/__pycache__/__init__.cpython-39.pyc +0 -0
  22. utils/__pycache__/autoanchor.cpython-39.pyc +0 -0
  23. utils/__pycache__/datasets.cpython-39.pyc +0 -0
  24. utils/__pycache__/general.cpython-39.pyc +0 -0
  25. utils/__pycache__/google_utils.cpython-39.pyc +0 -0
  26. utils/__pycache__/metrics.cpython-39.pyc +0 -0
  27. utils/__pycache__/plots.cpython-39.pyc +0 -0
  28. utils/__pycache__/torch_utils.cpython-39.pyc +0 -0
  29. utils/activations.py +72 -0
  30. utils/autoanchor.py +155 -0
  31. utils/aws/__init__.py +0 -0
  32. utils/aws/mime.sh +26 -0
  33. utils/aws/resume.py +37 -0
  34. utils/aws/userdata.sh +27 -0
  35. utils/datasets.py +1019 -0
  36. utils/face_datasets.py +834 -0
  37. utils/general.py +646 -0
  38. utils/google_app_engine/Dockerfile +25 -0
  39. utils/google_app_engine/additional_requirements.txt +4 -0
  40. utils/google_app_engine/app.yaml +14 -0
  41. utils/google_utils.py +122 -0
  42. utils/infer_utils.py +36 -0
  43. utils/loss.py +304 -0
  44. utils/metrics.py +200 -0
  45. utils/plots.py +413 -0
  46. utils/torch_utils.py +294 -0
  47. utils/wandb_logging/__init__.py +0 -0
  48. utils/wandb_logging/log_dataset.py +24 -0
  49. utils/wandb_logging/wandb_utils.py +306 -0
models/__init__.py ADDED
File without changes
models/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (143 Bytes). View file
 
models/__pycache__/common.cpython-39.pyc ADDED
Binary file (18.9 kB). View file
 
models/__pycache__/experimental.cpython-39.pyc ADDED
Binary file (5.62 kB). View file
 
models/__pycache__/yolo.cpython-39.pyc ADDED
Binary file (12.7 kB). View file
 
models/blazeface.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [5,6, 10,13, 21,26] # P3/8
9
+ - [55,72, 225,304, 438,553] # P4/16
10
+
11
+ # YOLOv5 backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [24, 3, 2]], # 0-P1/2
15
+ [-1, 2, BlazeBlock, [24]], # 1
16
+ [-1, 1, BlazeBlock, [48, None, 2]], # 2-P2/4
17
+ [-1, 2, BlazeBlock, [48]], # 3
18
+ [-1, 1, DoubleBlazeBlock, [96, 24, 2]], # 4-P3/8
19
+ [-1, 2, DoubleBlazeBlock, [96, 24]], # 5
20
+ [-1, 1, DoubleBlazeBlock, [96, 24, 2]], # 6-P4/16
21
+ [-1, 2, DoubleBlazeBlock, [96, 24]], # 7
22
+ ]
23
+
24
+
25
+ # YOLOv5 head
26
+ head:
27
+ [[-1, 1, Conv, [64, 1, 1]], # 8 (P4/32-large)
28
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
29
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
30
+ [-1, 1, Conv, [64, 1, 1]], # 11 (P3/8-medium)
31
+
32
+ [[11, 8], 1, Detect, [nc, anchors]], # Detect(P3, P4)
33
+ ]
models/blazeface_fpn.yaml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [5,6, 10,13, 21,26] # P3/8
9
+ - [55,72, 225,304, 438,553] # P4/16
10
+
11
+ # YOLOv5 backbone
12
+ backbone:
13
+ # [from, number, module, args]
14
+ [[-1, 1, Conv, [24, 3, 2]], # 0-P1/2
15
+ [-1, 2, BlazeBlock, [24]], # 1
16
+ [-1, 1, BlazeBlock, [48, None, 2]], # 2-P2/4
17
+ [-1, 2, BlazeBlock, [48]], # 3
18
+ [-1, 1, DoubleBlazeBlock, [96, 24, 2]], # 4-P3/8
19
+ [-1, 2, DoubleBlazeBlock, [96, 24]], # 5
20
+ [-1, 1, DoubleBlazeBlock, [96, 24, 2]], # 6-P4/16
21
+ [-1, 2, DoubleBlazeBlock, [96, 24]], # 7
22
+ ]
23
+
24
+
25
+ # YOLOv5 head
26
+ head:
27
+ [[-1, 1, Conv, [48, 1, 1]], # 8
28
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
29
+ [[-1, 5], 1, Concat, [1]], # cat backbone P3
30
+ [-1, 1, Conv, [48, 1, 1]], # 11 (P3/8-medium)
31
+
32
+ [-1, 1, nn.MaxPool2d, [3, 2, 1]], # 12
33
+ [[-1, 7], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 1, Conv, [48, 1, 1]], # 14 (P4/16-large)
35
+
36
+ [[11, 14], 1, Detect, [nc, anchors]], # Detect(P3, P4)
37
+ ]
38
+
models/common.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains modules common to various models
2
+
3
+ import math
4
+
5
+ import numpy as np
6
+ import requests
7
+ import torch
8
+ import torch.nn as nn
9
+ from PIL import Image, ImageDraw
10
+
11
+ from utils.datasets import letterbox
12
+ from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
13
+ from utils.plots import color_list
14
+
15
+ def autopad(k, p=None): # kernel, padding
16
+ # Pad to 'same'
17
+ if p is None:
18
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
19
+ return p
20
+
21
+ def channel_shuffle(x, groups):
22
+ batchsize, num_channels, height, width = x.data.size()
23
+ channels_per_group = num_channels // groups
24
+
25
+ # reshape
26
+ x = x.view(batchsize, groups, channels_per_group, height, width)
27
+ x = torch.transpose(x, 1, 2).contiguous()
28
+
29
+ # flatten
30
+ x = x.view(batchsize, -1, height, width)
31
+ return x
32
+
33
+ def DWConv(c1, c2, k=1, s=1, act=True):
34
+ # Depthwise convolution
35
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
36
+
37
+ class Conv(nn.Module):
38
+ # Standard convolution
39
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
40
+ super(Conv, self).__init__()
41
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
42
+ self.bn = nn.BatchNorm2d(c2)
43
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
44
+ #self.act = self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
45
+
46
+ def forward(self, x):
47
+ return self.act(self.bn(self.conv(x)))
48
+
49
+ def fuseforward(self, x):
50
+ return self.act(self.conv(x))
51
+
52
+ class StemBlock(nn.Module):
53
+ def __init__(self, c1, c2, k=3, s=2, p=None, g=1, act=True):
54
+ super(StemBlock, self).__init__()
55
+ self.stem_1 = Conv(c1, c2, k, s, p, g, act)
56
+ self.stem_2a = Conv(c2, c2 // 2, 1, 1, 0)
57
+ self.stem_2b = Conv(c2 // 2, c2, 3, 2, 1)
58
+ self.stem_2p = nn.MaxPool2d(kernel_size=2,stride=2,ceil_mode=True)
59
+ self.stem_3 = Conv(c2 * 2, c2, 1, 1, 0)
60
+
61
+ def forward(self, x):
62
+ stem_1_out = self.stem_1(x)
63
+ stem_2a_out = self.stem_2a(stem_1_out)
64
+ stem_2b_out = self.stem_2b(stem_2a_out)
65
+ stem_2p_out = self.stem_2p(stem_1_out)
66
+ out = self.stem_3(torch.cat((stem_2b_out,stem_2p_out),1))
67
+ return out
68
+
69
+ class Bottleneck(nn.Module):
70
+ # Standard bottleneck
71
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
72
+ super(Bottleneck, self).__init__()
73
+ c_ = int(c2 * e) # hidden channels
74
+ self.cv1 = Conv(c1, c_, 1, 1)
75
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
76
+ self.add = shortcut and c1 == c2
77
+
78
+ def forward(self, x):
79
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
80
+
81
+ class BottleneckCSP(nn.Module):
82
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
83
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
84
+ super(BottleneckCSP, self).__init__()
85
+ c_ = int(c2 * e) # hidden channels
86
+ self.cv1 = Conv(c1, c_, 1, 1)
87
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
88
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
89
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
90
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
91
+ self.act = nn.LeakyReLU(0.1, inplace=True)
92
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
93
+
94
+ def forward(self, x):
95
+ y1 = self.cv3(self.m(self.cv1(x)))
96
+ y2 = self.cv2(x)
97
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
98
+
99
+
100
+ class C3(nn.Module):
101
+ # CSP Bottleneck with 3 convolutions
102
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
103
+ super(C3, self).__init__()
104
+ c_ = int(c2 * e) # hidden channels
105
+ self.cv1 = Conv(c1, c_, 1, 1)
106
+ self.cv2 = Conv(c1, c_, 1, 1)
107
+ self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
108
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
109
+
110
+ def forward(self, x):
111
+ return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
112
+
113
+ class ShuffleV2Block(nn.Module):
114
+ def __init__(self, inp, oup, stride):
115
+ super(ShuffleV2Block, self).__init__()
116
+
117
+ if not (1 <= stride <= 3):
118
+ raise ValueError('illegal stride value')
119
+ self.stride = stride
120
+
121
+ branch_features = oup // 2
122
+ assert (self.stride != 1) or (inp == branch_features << 1)
123
+
124
+ if self.stride > 1:
125
+ self.branch1 = nn.Sequential(
126
+ self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
127
+ nn.BatchNorm2d(inp),
128
+ nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
129
+ nn.BatchNorm2d(branch_features),
130
+ nn.SiLU(),
131
+ )
132
+ else:
133
+ self.branch1 = nn.Sequential()
134
+
135
+ self.branch2 = nn.Sequential(
136
+ nn.Conv2d(inp if (self.stride > 1) else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
137
+ nn.BatchNorm2d(branch_features),
138
+ nn.SiLU(),
139
+ self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
140
+ nn.BatchNorm2d(branch_features),
141
+ nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
142
+ nn.BatchNorm2d(branch_features),
143
+ nn.SiLU(),
144
+ )
145
+
146
+ @staticmethod
147
+ def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):
148
+ return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)
149
+
150
+ def forward(self, x):
151
+ if self.stride == 1:
152
+ x1, x2 = x.chunk(2, dim=1)
153
+ out = torch.cat((x1, self.branch2(x2)), dim=1)
154
+ else:
155
+ out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
156
+ out = channel_shuffle(out, 2)
157
+ return out
158
+
159
+ class BlazeBlock(nn.Module):
160
+ def __init__(self, in_channels,out_channels,mid_channels=None,stride=1):
161
+ super(BlazeBlock, self).__init__()
162
+ mid_channels = mid_channels or in_channels
163
+ assert stride in [1, 2]
164
+ if stride>1:
165
+ self.use_pool = True
166
+ else:
167
+ self.use_pool = False
168
+
169
+ self.branch1 = nn.Sequential(
170
+ nn.Conv2d(in_channels=in_channels,out_channels=mid_channels,kernel_size=5,stride=stride,padding=2,groups=in_channels),
171
+ nn.BatchNorm2d(mid_channels),
172
+ nn.Conv2d(in_channels=mid_channels,out_channels=out_channels,kernel_size=1,stride=1),
173
+ nn.BatchNorm2d(out_channels),
174
+ )
175
+
176
+ if self.use_pool:
177
+ self.shortcut = nn.Sequential(
178
+ nn.MaxPool2d(kernel_size=stride, stride=stride),
179
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
180
+ nn.BatchNorm2d(out_channels),
181
+ )
182
+
183
+ self.relu = nn.SiLU(inplace=True)
184
+
185
+ def forward(self, x):
186
+ branch1 = self.branch1(x)
187
+ out = (branch1+self.shortcut(x)) if self.use_pool else (branch1+x)
188
+ return self.relu(out)
189
+
190
+ class DoubleBlazeBlock(nn.Module):
191
+ def __init__(self,in_channels,out_channels,mid_channels=None,stride=1):
192
+ super(DoubleBlazeBlock, self).__init__()
193
+ mid_channels = mid_channels or in_channels
194
+ assert stride in [1, 2]
195
+ if stride > 1:
196
+ self.use_pool = True
197
+ else:
198
+ self.use_pool = False
199
+
200
+ self.branch1 = nn.Sequential(
201
+ nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=5, stride=stride,padding=2,groups=in_channels),
202
+ nn.BatchNorm2d(in_channels),
203
+ nn.Conv2d(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1),
204
+ nn.BatchNorm2d(mid_channels),
205
+ nn.SiLU(inplace=True),
206
+ nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=5, stride=1,padding=2),
207
+ nn.BatchNorm2d(mid_channels),
208
+ nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1),
209
+ nn.BatchNorm2d(out_channels),
210
+ )
211
+
212
+ if self.use_pool:
213
+ self.shortcut = nn.Sequential(
214
+ nn.MaxPool2d(kernel_size=stride, stride=stride),
215
+ nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1),
216
+ nn.BatchNorm2d(out_channels),
217
+ )
218
+
219
+ self.relu = nn.SiLU(inplace=True)
220
+
221
+ def forward(self, x):
222
+ branch1 = self.branch1(x)
223
+ out = (branch1 + self.shortcut(x)) if self.use_pool else (branch1 + x)
224
+ return self.relu(out)
225
+
226
+
227
+ class SPP(nn.Module):
228
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
229
+ def __init__(self, c1, c2, k=(5, 9, 13)):
230
+ super(SPP, self).__init__()
231
+ c_ = c1 // 2 # hidden channels
232
+ self.cv1 = Conv(c1, c_, 1, 1)
233
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
234
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
235
+
236
+ def forward(self, x):
237
+ x = self.cv1(x)
238
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
239
+
240
+ class SPPF(nn.Module):
241
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
242
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
243
+ super().__init__()
244
+ c_ = c1 // 2 # hidden channels
245
+ self.cv1 = Conv(c1, c_, 1, 1)
246
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
247
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
248
+
249
+ def forward(self, x):
250
+ x = self.cv1(x)
251
+ with warnings.catch_warnings():
252
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
253
+ y1 = self.m(x)
254
+ y2 = self.m(y1)
255
+ return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
256
+
257
+
258
+ class Focus(nn.Module):
259
+ # Focus wh information into c-space
260
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
261
+ super(Focus, self).__init__()
262
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
263
+ # self.contract = Contract(gain=2)
264
+
265
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
266
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
267
+ # return self.conv(self.contract(x))
268
+
269
+
270
+ class Contract(nn.Module):
271
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
272
+ def __init__(self, gain=2):
273
+ super().__init__()
274
+ self.gain = gain
275
+
276
+ def forward(self, x):
277
+ N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
278
+ s = self.gain
279
+ x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
280
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
281
+ return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
282
+
283
+
284
+ class Expand(nn.Module):
285
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
286
+ def __init__(self, gain=2):
287
+ super().__init__()
288
+ self.gain = gain
289
+
290
+ def forward(self, x):
291
+ N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
292
+ s = self.gain
293
+ x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
294
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
295
+ return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
296
+
297
+
298
+ class Concat(nn.Module):
299
+ # Concatenate a list of tensors along dimension
300
+ def __init__(self, dimension=1):
301
+ super(Concat, self).__init__()
302
+ self.d = dimension
303
+
304
+ def forward(self, x):
305
+ return torch.cat(x, self.d)
306
+
307
+
308
+ class NMS(nn.Module):
309
+ # Non-Maximum Suppression (NMS) module
310
+ conf = 0.25 # confidence threshold
311
+ iou = 0.45 # IoU threshold
312
+ classes = None # (optional list) filter by class
313
+
314
+ def __init__(self):
315
+ super(NMS, self).__init__()
316
+
317
+ def forward(self, x):
318
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
319
+
320
+ class autoShape(nn.Module):
321
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
322
+ img_size = 640 # inference size (pixels)
323
+ conf = 0.25 # NMS confidence threshold
324
+ iou = 0.45 # NMS IoU threshold
325
+ classes = None # (optional list) filter by class
326
+
327
+ def __init__(self, model):
328
+ super(autoShape, self).__init__()
329
+ self.model = model.eval()
330
+
331
+ def autoshape(self):
332
+ print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
333
+ return self
334
+
335
+ def forward(self, imgs, size=640, augment=False, profile=False):
336
+ # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
337
+ # filename: imgs = 'data/samples/zidane.jpg'
338
+ # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
339
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
340
+ # PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
341
+ # numpy: = np.zeros((720,1280,3)) # HWC
342
+ # torch: = torch.zeros(16,3,720,1280) # BCHW
343
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
344
+
345
+ p = next(self.model.parameters()) # for device and type
346
+ if isinstance(imgs, torch.Tensor): # torch
347
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
348
+
349
+ # Pre-process
350
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
351
+ shape0, shape1 = [], [] # image and inference shapes
352
+ for i, im in enumerate(imgs):
353
+ if isinstance(im, str): # filename or uri
354
+ im = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im) # open
355
+ im = np.array(im) # to numpy
356
+ if im.shape[0] < 5: # image in CHW
357
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
358
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
359
+ s = im.shape[:2] # HWC
360
+ shape0.append(s) # image shape
361
+ g = (size / max(s)) # gain
362
+ shape1.append([y * g for y in s])
363
+ imgs[i] = im # update
364
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
365
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
366
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
367
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
368
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
369
+
370
+ # Inference
371
+ with torch.no_grad():
372
+ y = self.model(x, augment, profile)[0] # forward
373
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
374
+
375
+ # Post-process
376
+ for i in range(n):
377
+ scale_coords(shape1, y[i][:, :4], shape0[i])
378
+
379
+ return Detections(imgs, y, self.names)
380
+
381
+
382
+ class Detections:
383
+ # detections class for YOLOv5 inference results
384
+ def __init__(self, imgs, pred, names=None):
385
+ super(Detections, self).__init__()
386
+ d = pred[0].device # device
387
+ gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
388
+ self.imgs = imgs # list of images as numpy arrays
389
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
390
+ self.names = names # class names
391
+ self.xyxy = pred # xyxy pixels
392
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
393
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
394
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
395
+ self.n = len(self.pred)
396
+
397
+ def display(self, pprint=False, show=False, save=False, render=False):
398
+ colors = color_list()
399
+ for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
400
+ str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
401
+ if pred is not None:
402
+ for c in pred[:, -1].unique():
403
+ n = (pred[:, -1] == c).sum() # detections per class
404
+ if len(self.names) > int(c):
405
+ str += f'{n} {self.names[int(c)]}s, ' # add to string
406
+ if show or save or render:
407
+ img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
408
+ for *box, conf, cls in pred: # xyxy, confidence, class
409
+ # str += '%s %.2f, ' % (names[int(cls)], conf) # label
410
+ ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
411
+ if pprint:
412
+ print(str)
413
+ if show:
414
+ img.show(f'Image {i}') # show
415
+ if save:
416
+ f = f'results{i}.jpg'
417
+ str += f"saved to '{f}'"
418
+ img.save(f) # save
419
+ if render:
420
+ self.imgs[i] = np.asarray(img)
421
+
422
+ def print(self):
423
+ self.display(pprint=True) # print results
424
+
425
+ def show(self):
426
+ self.display(show=True) # show results
427
+
428
+ def save(self):
429
+ self.display(save=True) # save results
430
+
431
+ def render(self):
432
+ self.display(render=True) # render results
433
+ return self.imgs
434
+
435
+ def __len__(self):
436
+ return self.n
437
+
438
+ def tolist(self):
439
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
440
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
441
+ for d in x:
442
+ for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
443
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
444
+ return x
445
+
446
+
447
+ class Classify(nn.Module):
448
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
449
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
450
+ super(Classify, self).__init__()
451
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
452
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
453
+ self.flat = nn.Flatten()
454
+
455
+ def forward(self, x):
456
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
457
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
models/experimental.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains experimental modules
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from models.common import Conv, DWConv
8
+ from utils.google_utils import attempt_download
9
+
10
+
11
+ class CrossConv(nn.Module):
12
+ # Cross Convolution Downsample
13
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
14
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
15
+ super(CrossConv, self).__init__()
16
+ c_ = int(c2 * e) # hidden channels
17
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
18
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
19
+ self.add = shortcut and c1 == c2
20
+
21
+ def forward(self, x):
22
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
23
+
24
+
25
+ class Sum(nn.Module):
26
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
27
+ def __init__(self, n, weight=False): # n: number of inputs
28
+ super(Sum, self).__init__()
29
+ self.weight = weight # apply weights boolean
30
+ self.iter = range(n - 1) # iter object
31
+ if weight:
32
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
33
+
34
+ def forward(self, x):
35
+ y = x[0] # no weight
36
+ if self.weight:
37
+ w = torch.sigmoid(self.w) * 2
38
+ for i in self.iter:
39
+ y = y + x[i + 1] * w[i]
40
+ else:
41
+ for i in self.iter:
42
+ y = y + x[i + 1]
43
+ return y
44
+
45
+
46
+ class GhostConv(nn.Module):
47
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
48
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
49
+ super(GhostConv, self).__init__()
50
+ c_ = c2 // 2 # hidden channels
51
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
52
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
53
+
54
+ def forward(self, x):
55
+ y = self.cv1(x)
56
+ return torch.cat([y, self.cv2(y)], 1)
57
+
58
+
59
+ class GhostBottleneck(nn.Module):
60
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
61
+ def __init__(self, c1, c2, k, s):
62
+ super(GhostBottleneck, self).__init__()
63
+ c_ = c2 // 2
64
+ self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
65
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
66
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
67
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
68
+ Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
69
+
70
+ def forward(self, x):
71
+ return self.conv(x) + self.shortcut(x)
72
+
73
+
74
+ class MixConv2d(nn.Module):
75
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
76
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
77
+ super(MixConv2d, self).__init__()
78
+ groups = len(k)
79
+ if equal_ch: # equal c_ per group
80
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
81
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
82
+ else: # equal weight.numel() per group
83
+ b = [c2] + [0] * groups
84
+ a = np.eye(groups + 1, groups, k=-1)
85
+ a -= np.roll(a, 1, axis=1)
86
+ a *= np.array(k) ** 2
87
+ a[0] = 1
88
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
89
+
90
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
91
+ self.bn = nn.BatchNorm2d(c2)
92
+ self.act = nn.LeakyReLU(0.1, inplace=True)
93
+
94
+ def forward(self, x):
95
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
96
+
97
+
98
+ class Ensemble(nn.ModuleList):
99
+ # Ensemble of models
100
+ def __init__(self):
101
+ super(Ensemble, self).__init__()
102
+
103
+ def forward(self, x, augment=False):
104
+ y = []
105
+ for module in self:
106
+ y.append(module(x, augment)[0])
107
+ # y = torch.stack(y).max(0)[0] # max ensemble
108
+ # y = torch.stack(y).mean(0) # mean ensemble
109
+ y = torch.cat(y, 1) # nms ensemble
110
+ return y, None # inference, train output
111
+
112
+
113
+ def attempt_load(weights, map_location=None):
114
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
115
+ model = Ensemble()
116
+ for w in weights if isinstance(weights, list) else [weights]:
117
+ attempt_download(w)
118
+ model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
119
+
120
+ # Compatibility updates
121
+ for m in model.modules():
122
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
123
+ m.inplace = True # pytorch 1.7.0 compatibility
124
+ elif type(m) is Conv:
125
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
126
+
127
+ if len(model) == 1:
128
+ return model[-1] # return model
129
+ else:
130
+ print('Ensemble created with %s\n' % weights)
131
+ for k in ['names', 'stride']:
132
+ setattr(model, k, getattr(model[-1], k))
133
+ return model # return ensemble
models/yolo.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import math
4
+ import sys
5
+ from copy import deepcopy
6
+ from pathlib import Path
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
12
+ logger = logging.getLogger(__name__)
13
+
14
+ from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, C3, ShuffleV2Block, Concat, NMS, autoShape, StemBlock, BlazeBlock, DoubleBlazeBlock
15
+ from models.experimental import MixConv2d, CrossConv
16
+ from utils.autoanchor import check_anchor_order
17
+ from utils.general import make_divisible, check_file, set_logging
18
+ from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
19
+ select_device, copy_attr
20
+
21
+ try:
22
+ import thop # for FLOPS computation
23
+ except ImportError:
24
+ thop = None
25
+
26
+
27
+ class Detect(nn.Module):
28
+ stride = None # strides computed during build
29
+ export_cat = False # onnx export cat output
30
+
31
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
32
+ super(Detect, self).__init__()
33
+ self.nc = nc # number of classes
34
+ #self.no = nc + 5 # number of outputs per anchor
35
+ self.no = nc + 5 + 10 # number of outputs per anchor
36
+
37
+ self.nl = len(anchors) # number of detection layers
38
+ self.na = len(anchors[0]) // 2 # number of anchors
39
+ self.grid = [torch.zeros(1)] * self.nl # init grid
40
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
41
+ self.register_buffer('anchors', a) # shape(nl,na,2)
42
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
43
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
44
+
45
+ def forward(self, x):
46
+ # x = x.copy() # for profiling
47
+ z = [] # inference output
48
+ if self.export_cat:
49
+ for i in range(self.nl):
50
+ x[i] = self.m[i](x[i]) # conv
51
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
52
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
53
+
54
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
55
+ # self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
56
+ self.grid[i], self.anchor_grid[i] = self._make_grid_new(nx, ny,i)
57
+
58
+ y = torch.full_like(x[i], 0)
59
+ y = y + torch.cat((x[i][:, :, :, :, 0:5].sigmoid(), torch.cat((x[i][:, :, :, :, 5:15], x[i][:, :, :, :, 15:15+self.nc].sigmoid()), 4)), 4)
60
+
61
+ box_xy = (y[:, :, :, :, 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
62
+ box_wh = (y[:, :, :, :, 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
63
+ # box_conf = torch.cat((box_xy, torch.cat((box_wh, y[:, :, :, :, 4:5]), 4)), 4)
64
+
65
+ landm1 = y[:, :, :, :, 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
66
+ landm2 = y[:, :, :, :, 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x2 y2
67
+ landm3 = y[:, :, :, :, 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x3 y3
68
+ landm4 = y[:, :, :, :, 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x4 y4
69
+ landm5 = y[:, :, :, :, 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x5 y5
70
+ # landm = torch.cat((landm1, torch.cat((landm2, torch.cat((landm3, torch.cat((landm4, landm5), 4)), 4)), 4)), 4)
71
+ # y = torch.cat((box_conf, torch.cat((landm, y[:, :, :, :, 15:15+self.nc]), 4)), 4)
72
+ y = torch.cat([box_xy, box_wh, y[:, :, :, :, 4:5], landm1, landm2, landm3, landm4, landm5, y[:, :, :, :, 15:15+self.nc]], -1)
73
+
74
+ z.append(y.view(bs, -1, self.no))
75
+ return torch.cat(z, 1)
76
+
77
+ for i in range(self.nl):
78
+ x[i] = self.m[i](x[i]) # conv
79
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
80
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
81
+
82
+ if not self.training: # inference
83
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
84
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
85
+
86
+ y = torch.full_like(x[i], 0)
87
+ class_range = list(range(5)) + list(range(15,15+self.nc))
88
+ y[..., class_range] = x[i][..., class_range].sigmoid()
89
+ y[..., 5:15] = x[i][..., 5:15]
90
+ #y = x[i].sigmoid()
91
+
92
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
93
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
94
+
95
+ #y[..., 5:15] = y[..., 5:15] * 8 - 4
96
+ y[..., 5:7] = y[..., 5:7] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i] # landmark x1 y1
97
+ y[..., 7:9] = y[..., 7:9] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x2 y2
98
+ y[..., 9:11] = y[..., 9:11] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x3 y3
99
+ y[..., 11:13] = y[..., 11:13] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x4 y4
100
+ y[..., 13:15] = y[..., 13:15] * self.anchor_grid[i] + self.grid[i].to(x[i].device) * self.stride[i]# landmark x5 y5
101
+
102
+ #y[..., 5:7] = (y[..., 5:7] * 2 -1) * self.anchor_grid[i] # landmark x1 y1
103
+ #y[..., 7:9] = (y[..., 7:9] * 2 -1) * self.anchor_grid[i] # landmark x2 y2
104
+ #y[..., 9:11] = (y[..., 9:11] * 2 -1) * self.anchor_grid[i] # landmark x3 y3
105
+ #y[..., 11:13] = (y[..., 11:13] * 2 -1) * self.anchor_grid[i] # landmark x4 y4
106
+ #y[..., 13:15] = (y[..., 13:15] * 2 -1) * self.anchor_grid[i] # landmark x5 y5
107
+
108
+ z.append(y.view(bs, -1, self.no))
109
+
110
+ return x if self.training else (torch.cat(z, 1), x)
111
+
112
+ @staticmethod
113
+ def _make_grid(nx=20, ny=20):
114
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
115
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
116
+
117
+ def _make_grid_new(self,nx=20, ny=20,i=0):
118
+ d = self.anchors[i].device
119
+ if '1.10.0' in torch.__version__: # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
120
+ yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
121
+ else:
122
+ yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
123
+ grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
124
+ anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
125
+ return grid, anchor_grid
126
+ class Model(nn.Module):
127
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
128
+ super(Model, self).__init__()
129
+ if isinstance(cfg, dict):
130
+ self.yaml = cfg # model dict
131
+ else: # is *.yaml
132
+ import yaml # for torch hub
133
+ self.yaml_file = Path(cfg).name
134
+ with open(cfg) as f:
135
+ self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
136
+
137
+ # Define model
138
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
139
+ if nc and nc != self.yaml['nc']:
140
+ logger.info('Overriding model.yaml nc=%g with nc=%g' % (self.yaml['nc'], nc))
141
+ self.yaml['nc'] = nc # override yaml value
142
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
143
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
144
+ # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
145
+
146
+ # Build strides, anchors
147
+ m = self.model[-1] # Detect()
148
+ if isinstance(m, Detect):
149
+ s = 128 # 2x min stride
150
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
151
+ m.anchors /= m.stride.view(-1, 1, 1)
152
+ check_anchor_order(m)
153
+ self.stride = m.stride
154
+ self._initialize_biases() # only run once
155
+ # print('Strides: %s' % m.stride.tolist())
156
+
157
+ # Init weights, biases
158
+ initialize_weights(self)
159
+ self.info()
160
+ logger.info('')
161
+
162
+ def forward(self, x, augment=False, profile=False):
163
+ if augment:
164
+ img_size = x.shape[-2:] # height, width
165
+ s = [1, 0.83, 0.67] # scales
166
+ f = [None, 3, None] # flips (2-ud, 3-lr)
167
+ y = [] # outputs
168
+ for si, fi in zip(s, f):
169
+ xi = scale_img(x.flip(fi) if fi else x, si)
170
+ yi = self.forward_once(xi)[0] # forward
171
+ # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
172
+ yi[..., :4] /= si # de-scale
173
+ if fi == 2:
174
+ yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
175
+ elif fi == 3:
176
+ yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
177
+ y.append(yi)
178
+ return torch.cat(y, 1), None # augmented inference, train
179
+ else:
180
+ return self.forward_once(x, profile) # single-scale inference, train
181
+
182
+ def forward_once(self, x, profile=False):
183
+ y, dt = [], [] # outputs
184
+ for m in self.model:
185
+ if m.f != -1: # if not from previous layer
186
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
187
+
188
+ if profile:
189
+ o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
190
+ t = time_synchronized()
191
+ for _ in range(10):
192
+ _ = m(x)
193
+ dt.append((time_synchronized() - t) * 100)
194
+ print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
195
+
196
+ x = m(x) # run
197
+ y.append(x if m.i in self.save else None) # save output
198
+
199
+ if profile:
200
+ print('%.1fms total' % sum(dt))
201
+ return x
202
+
203
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
204
+ # https://arxiv.org/abs/1708.02002 section 3.3
205
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
206
+ m = self.model[-1] # Detect() module
207
+ for mi, s in zip(m.m, m.stride): # from
208
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
209
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
210
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
211
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
212
+
213
+ def _print_biases(self):
214
+ m = self.model[-1] # Detect() module
215
+ for mi in m.m: # from
216
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
217
+ print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
218
+
219
+ # def _print_weights(self):
220
+ # for m in self.model.modules():
221
+ # if type(m) is Bottleneck:
222
+ # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
223
+
224
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
225
+ print('Fusing layers... ')
226
+ for m in self.model.modules():
227
+ if type(m) is Conv and hasattr(m, 'bn'):
228
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
229
+ delattr(m, 'bn') # remove batchnorm
230
+ m.forward = m.fuseforward # update forward
231
+ elif type(m) is nn.Upsample:
232
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
233
+ self.info()
234
+ return self
235
+
236
+ def nms(self, mode=True): # add or remove NMS module
237
+ present = type(self.model[-1]) is NMS # last layer is NMS
238
+ if mode and not present:
239
+ print('Adding NMS... ')
240
+ m = NMS() # module
241
+ m.f = -1 # from
242
+ m.i = self.model[-1].i + 1 # index
243
+ self.model.add_module(name='%s' % m.i, module=m) # add
244
+ self.eval()
245
+ elif not mode and present:
246
+ print('Removing NMS... ')
247
+ self.model = self.model[:-1] # remove
248
+ return self
249
+
250
+ def autoshape(self): # add autoShape module
251
+ print('Adding autoShape... ')
252
+ m = autoShape(self) # wrap model
253
+ copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
254
+ return m
255
+
256
+ def info(self, verbose=False, img_size=640): # print model information
257
+ model_info(self, verbose, img_size)
258
+
259
+
260
+ def parse_model(d, ch): # model_dict, input_channels(3)
261
+ logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
262
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
263
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
264
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
265
+
266
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
267
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
268
+ m = eval(m) if isinstance(m, str) else m # eval strings
269
+ for j, a in enumerate(args):
270
+ try:
271
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
272
+ except:
273
+ pass
274
+
275
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
276
+ if m in [Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3, ShuffleV2Block, StemBlock, BlazeBlock, DoubleBlazeBlock]:
277
+ c1, c2 = ch[f], args[0]
278
+
279
+ # Normal
280
+ # if i > 0 and args[0] != no: # channel expansion factor
281
+ # ex = 1.75 # exponential (default 2.0)
282
+ # e = math.log(c2 / ch[1]) / math.log(2)
283
+ # c2 = int(ch[1] * ex ** e)
284
+ # if m != Focus:
285
+
286
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
287
+
288
+ # Experimental
289
+ # if i > 0 and args[0] != no: # channel expansion factor
290
+ # ex = 1 + gw # exponential (default 2.0)
291
+ # ch1 = 32 # ch[1]
292
+ # e = math.log(c2 / ch1) / math.log(2) # level 1-n
293
+ # c2 = int(ch1 * ex ** e)
294
+ # if m != Focus:
295
+ # c2 = make_divisible(c2, 8) if c2 != no else c2
296
+
297
+ args = [c1, c2, *args[1:]]
298
+ if m in [BottleneckCSP, C3]:
299
+ args.insert(2, n)
300
+ n = 1
301
+ elif m is nn.BatchNorm2d:
302
+ args = [ch[f]]
303
+ elif m is Concat:
304
+ c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
305
+ elif m is Detect:
306
+ args.append([ch[x + 1] for x in f])
307
+ if isinstance(args[1], int): # number of anchors
308
+ args[1] = [list(range(args[1] * 2))] * len(f)
309
+ else:
310
+ c2 = ch[f]
311
+
312
+ m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
313
+ t = str(m)[8:-2].replace('__main__.', '') # module type
314
+ np = sum([x.numel() for x in m_.parameters()]) # number params
315
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
316
+ logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
317
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
318
+ layers.append(m_)
319
+ ch.append(c2)
320
+ return nn.Sequential(*layers), sorted(save)
321
+
322
+
323
+ from thop import profile
324
+ from thop import clever_format
325
+ if __name__ == '__main__':
326
+ parser = argparse.ArgumentParser()
327
+ parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
328
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
329
+ opt = parser.parse_args()
330
+ opt.cfg = check_file(opt.cfg) # check file
331
+ set_logging()
332
+ device = select_device(opt.device)
333
+
334
+ # Create model
335
+ model = Model(opt.cfg).to(device)
336
+ stride = model.stride.max()
337
+ if stride == 32:
338
+ input = torch.Tensor(1, 3, 480, 640).to(device)
339
+ else:
340
+ input = torch.Tensor(1, 3, 512, 640).to(device)
341
+ model.train()
342
+ print(model)
343
+ flops, params = profile(model, inputs=(input, ))
344
+ flops, params = clever_format([flops, params], "%.3f")
345
+ print('Flops:', flops, ',Params:' ,params)
models/yolov5l.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
16
+ [-1, 3, C3, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 9, C3, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
20
+ [-1, 9, C3, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
22
+ [-1, 1, SPP, [1024, [3,5,7]]],
23
+ [-1, 3, C3, [1024, False]], # 8
24
+ ]
25
+
26
+ # YOLOv5 head
27
+ head:
28
+ [[-1, 1, Conv, [512, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 5], 1, Concat, [1]], # cat backbone P4
31
+ [-1, 3, C3, [512, False]], # 12
32
+
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 3], 1, Concat, [1]], # cat backbone P3
36
+ [-1, 3, C3, [256, False]], # 16 (P3/8-small)
37
+
38
+ [-1, 1, Conv, [256, 3, 2]],
39
+ [[-1, 13], 1, Concat, [1]], # cat head P4
40
+ [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
41
+
42
+ [-1, 1, Conv, [512, 3, 2]],
43
+ [[-1, 9], 1, Concat, [1]], # cat head P5
44
+ [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
45
+
46
+ [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
47
+ ]
models/yolov5l6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [6,7, 9,11, 13,16] # P3/8
9
+ - [18,23, 26,33, 37,47] # P4/16
10
+ - [54,67, 77,104, 112,154] # P5/32
11
+ - [174,238, 258,355, 445,568] # P6/64
12
+
13
+ # YOLOv5 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [ [ -1, 1, StemBlock, [ 64, 3, 2 ] ], # 0-P1/2
17
+ [ -1, 3, C3, [ 128 ] ],
18
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 2-P3/8
19
+ [ -1, 9, C3, [ 256 ] ],
20
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 4-P4/16
21
+ [ -1, 9, C3, [ 512 ] ],
22
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 6-P5/32
23
+ [ -1, 3, C3, [ 768 ] ],
24
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 8-P6/64
25
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
26
+ [ -1, 3, C3, [ 1024, False ] ], # 10
27
+ ]
28
+
29
+ # YOLOv5 head
30
+ head:
31
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
32
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
+ [ [ -1, 7 ], 1, Concat, [ 1 ] ], # cat backbone P5
34
+ [ -1, 3, C3, [ 768, False ] ], # 14
35
+
36
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
37
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
38
+ [ [ -1, 5 ], 1, Concat, [ 1 ] ], # cat backbone P4
39
+ [ -1, 3, C3, [ 512, False ] ], # 18
40
+
41
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
42
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
43
+ [ [ -1, 3 ], 1, Concat, [ 1 ] ], # cat backbone P3
44
+ [ -1, 3, C3, [ 256, False ] ], # 22 (P3/8-small)
45
+
46
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
47
+ [ [ -1, 19 ], 1, Concat, [ 1 ] ], # cat head P4
48
+ [ -1, 3, C3, [ 512, False ] ], # 25 (P4/16-medium)
49
+
50
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
51
+ [ [ -1, 15 ], 1, Concat, [ 1 ] ], # cat head P5
52
+ [ -1, 3, C3, [ 768, False ] ], # 28 (P5/32-large)
53
+
54
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
55
+ [ [ -1, 11 ], 1, Concat, [ 1 ] ], # cat head P6
56
+ [ -1, 3, C3, [ 1024, False ] ], # 31 (P6/64-xlarge)
57
+
58
+ [ [ 22, 25, 28, 31 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
59
+ ]
60
+
models/yolov5m.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 0.67 # model depth multiple
4
+ width_multiple: 0.75 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
16
+ [-1, 3, C3, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 9, C3, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
20
+ [-1, 9, C3, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
22
+ [-1, 1, SPP, [1024, [3,5,7]]],
23
+ [-1, 3, C3, [1024, False]], # 8
24
+ ]
25
+
26
+ # YOLOv5 head
27
+ head:
28
+ [[-1, 1, Conv, [512, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 5], 1, Concat, [1]], # cat backbone P4
31
+ [-1, 3, C3, [512, False]], # 12
32
+
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 3], 1, Concat, [1]], # cat backbone P3
36
+ [-1, 3, C3, [256, False]], # 16 (P3/8-small)
37
+
38
+ [-1, 1, Conv, [256, 3, 2]],
39
+ [[-1, 13], 1, Concat, [1]], # cat head P4
40
+ [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
41
+
42
+ [-1, 1, Conv, [512, 3, 2]],
43
+ [[-1, 9], 1, Concat, [1]], # cat head P5
44
+ [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
45
+
46
+ [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
47
+ ]
models/yolov5m6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 0.67 # model depth multiple
4
+ width_multiple: 0.75 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [6,7, 9,11, 13,16] # P3/8
9
+ - [18,23, 26,33, 37,47] # P4/16
10
+ - [54,67, 77,104, 112,154] # P5/32
11
+ - [174,238, 258,355, 445,568] # P6/64
12
+
13
+ # YOLOv5 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [ [ -1, 1, StemBlock, [ 64, 3, 2 ] ], # 0-P1/2
17
+ [ -1, 3, C3, [ 128 ] ],
18
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 2-P3/8
19
+ [ -1, 9, C3, [ 256 ] ],
20
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 4-P4/16
21
+ [ -1, 9, C3, [ 512 ] ],
22
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 6-P5/32
23
+ [ -1, 3, C3, [ 768 ] ],
24
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 8-P6/64
25
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
26
+ [ -1, 3, C3, [ 1024, False ] ], # 10
27
+ ]
28
+
29
+ # YOLOv5 head
30
+ head:
31
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
32
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
+ [ [ -1, 7 ], 1, Concat, [ 1 ] ], # cat backbone P5
34
+ [ -1, 3, C3, [ 768, False ] ], # 14
35
+
36
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
37
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
38
+ [ [ -1, 5 ], 1, Concat, [ 1 ] ], # cat backbone P4
39
+ [ -1, 3, C3, [ 512, False ] ], # 18
40
+
41
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
42
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
43
+ [ [ -1, 3 ], 1, Concat, [ 1 ] ], # cat backbone P3
44
+ [ -1, 3, C3, [ 256, False ] ], # 22 (P3/8-small)
45
+
46
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
47
+ [ [ -1, 19 ], 1, Concat, [ 1 ] ], # cat head P4
48
+ [ -1, 3, C3, [ 512, False ] ], # 25 (P4/16-medium)
49
+
50
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
51
+ [ [ -1, 15 ], 1, Concat, [ 1 ] ], # cat head P5
52
+ [ -1, 3, C3, [ 768, False ] ], # 28 (P5/32-large)
53
+
54
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
55
+ [ [ -1, 11 ], 1, Concat, [ 1 ] ], # cat head P6
56
+ [ -1, 3, C3, [ 1024, False ] ], # 31 (P6/64-xlarge)
57
+
58
+ [ [ 22, 25, 28, 31 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
59
+ ]
60
+
models/yolov5n-0.5.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 0.5 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
16
+ [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
17
+ [-1, 3, ShuffleV2Block, [128, 1]], # 2
18
+ [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
19
+ [-1, 7, ShuffleV2Block, [256, 1]], # 4
20
+ [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
21
+ [-1, 3, ShuffleV2Block, [512, 1]], # 6
22
+ ]
23
+
24
+ # YOLOv5 head
25
+ head:
26
+ [[-1, 1, Conv, [128, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 4], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 1, C3, [128, False]], # 10
30
+
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 2], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 1, C3, [128, False]], # 14 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 3, 2]],
37
+ [[-1, 11], 1, Concat, [1]], # cat head P4
38
+ [-1, 1, C3, [128, False]], # 17 (P4/16-medium)
39
+
40
+ [-1, 1, Conv, [128, 3, 2]],
41
+ [[-1, 7], 1, Concat, [1]], # cat head P5
42
+ [-1, 1, C3, [128, False]], # 20 (P5/32-large)
43
+
44
+ [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45
+ ]
46
+
models/yolov5n.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
16
+ [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
17
+ [-1, 3, ShuffleV2Block, [128, 1]], # 2
18
+ [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
19
+ [-1, 7, ShuffleV2Block, [256, 1]], # 4
20
+ [-1, 1, ShuffleV2Block, [512, 2]], # 5-P5/32
21
+ [-1, 3, ShuffleV2Block, [512, 1]], # 6
22
+ ]
23
+
24
+ # YOLOv5 head
25
+ head:
26
+ [[-1, 1, Conv, [128, 1, 1]],
27
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
28
+ [[-1, 4], 1, Concat, [1]], # cat backbone P4
29
+ [-1, 1, C3, [128, False]], # 10
30
+
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [[-1, 2], 1, Concat, [1]], # cat backbone P3
34
+ [-1, 1, C3, [128, False]], # 14 (P3/8-small)
35
+
36
+ [-1, 1, Conv, [128, 3, 2]],
37
+ [[-1, 11], 1, Concat, [1]], # cat head P4
38
+ [-1, 1, C3, [128, False]], # 17 (P4/16-medium)
39
+
40
+ [-1, 1, Conv, [128, 3, 2]],
41
+ [[-1, 7], 1, Concat, [1]], # cat head P5
42
+ [-1, 1, C3, [128, False]], # 20 (P5/32-large)
43
+
44
+ [[14, 17, 20], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
45
+ ]
46
+
models/yolov5n6.yaml ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [6,7, 9,11, 13,16] # P3/8
9
+ - [18,23, 26,33, 37,47] # P4/16
10
+ - [54,67, 77,104, 112,154] # P5/32
11
+ - [174,238, 258,355, 445,568] # P6/64
12
+
13
+ # YOLOv5 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, StemBlock, [32, 3, 2]], # 0-P2/4
17
+ [-1, 1, ShuffleV2Block, [128, 2]], # 1-P3/8
18
+ [-1, 3, ShuffleV2Block, [128, 1]], # 2
19
+ [-1, 1, ShuffleV2Block, [256, 2]], # 3-P4/16
20
+ [-1, 7, ShuffleV2Block, [256, 1]], # 4
21
+ [-1, 1, ShuffleV2Block, [384, 2]], # 5-P5/32
22
+ [-1, 3, ShuffleV2Block, [384, 1]], # 6
23
+ [-1, 1, ShuffleV2Block, [512, 2]], # 7-P6/64
24
+ [-1, 3, ShuffleV2Block, [512, 1]], # 8
25
+ ]
26
+
27
+ # YOLOv5 head
28
+ head:
29
+ [[-1, 1, Conv, [128, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P5
32
+ [-1, 1, C3, [128, False]], # 12
33
+
34
+ [-1, 1, Conv, [128, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P4
37
+ [-1, 1, C3, [128, False]], # 16 (P4/8-small)
38
+
39
+ [-1, 1, Conv, [128, 1, 1]],
40
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
41
+ [[-1, 2], 1, Concat, [1]], # cat backbone P3
42
+ [-1, 1, C3, [128, False]], # 20 (P3/8-small)
43
+
44
+ [-1, 1, Conv, [128, 3, 2]],
45
+ [[-1, 17], 1, Concat, [1]], # cat head P4
46
+ [-1, 1, C3, [128, False]], # 23 (P4/16-medium)
47
+
48
+ [-1, 1, Conv, [128, 3, 2]],
49
+ [[-1, 13], 1, Concat, [1]], # cat head P5
50
+ [-1, 1, C3, [128, False]], # 26 (P5/32-large)
51
+
52
+ [-1, 1, Conv, [128, 3, 2]],
53
+ [[-1, 9], 1, Concat, [1]], # cat head P6
54
+ [-1, 1, C3, [128, False]], # 29 (P6/64-large)
55
+
56
+ [[20, 23, 26, 29], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
57
+ ]
58
+
models/yolov5s.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 0.33 # model depth multiple
4
+ width_multiple: 0.5 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [4,5, 8,10, 13,16] # P3/8
9
+ - [23,29, 43,55, 73,105] # P4/16
10
+ - [146,217, 231,300, 335,433] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, StemBlock, [64, 3, 2]], # 0-P1/2
16
+ [-1, 3, C3, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 9, C3, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P4/16
20
+ [-1, 9, C3, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P5/32
22
+ [-1, 1, SPP, [1024, [3,5,7]]],
23
+ [-1, 3, C3, [1024, False]], # 8
24
+ ]
25
+
26
+ # YOLOv5 head
27
+ head:
28
+ [[-1, 1, Conv, [512, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [[-1, 5], 1, Concat, [1]], # cat backbone P4
31
+ [-1, 3, C3, [512, False]], # 12
32
+
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [[-1, 3], 1, Concat, [1]], # cat backbone P3
36
+ [-1, 3, C3, [256, False]], # 16 (P3/8-small)
37
+
38
+ [-1, 1, Conv, [256, 3, 2]],
39
+ [[-1, 13], 1, Concat, [1]], # cat head P4
40
+ [-1, 3, C3, [512, False]], # 19 (P4/16-medium)
41
+
42
+ [-1, 1, Conv, [512, 3, 2]],
43
+ [[-1, 9], 1, Concat, [1]], # cat head P5
44
+ [-1, 3, C3, [1024, False]], # 22 (P5/32-large)
45
+
46
+ [[16, 19, 22], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
47
+ ]
models/yolov5s6.yaml ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 0.33 # model depth multiple
4
+ width_multiple: 0.50 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [6,7, 9,11, 13,16] # P3/8
9
+ - [18,23, 26,33, 37,47] # P4/16
10
+ - [54,67, 77,104, 112,154] # P5/32
11
+ - [174,238, 258,355, 445,568] # P6/64
12
+
13
+ # YOLOv5 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [ [ -1, 1, StemBlock, [ 64, 3, 2 ] ], # 0-P1/2
17
+ [ -1, 3, C3, [ 128 ] ],
18
+ [ -1, 1, Conv, [ 256, 3, 2 ] ], # 2-P3/8
19
+ [ -1, 9, C3, [ 256 ] ],
20
+ [ -1, 1, Conv, [ 512, 3, 2 ] ], # 4-P4/16
21
+ [ -1, 9, C3, [ 512 ] ],
22
+ [ -1, 1, Conv, [ 768, 3, 2 ] ], # 6-P5/32
23
+ [ -1, 3, C3, [ 768 ] ],
24
+ [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 8-P6/64
25
+ [ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
26
+ [ -1, 3, C3, [ 1024, False ] ], # 10
27
+ ]
28
+
29
+ # YOLOv5 head
30
+ head:
31
+ [ [ -1, 1, Conv, [ 768, 1, 1 ] ],
32
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
33
+ [ [ -1, 7 ], 1, Concat, [ 1 ] ], # cat backbone P5
34
+ [ -1, 3, C3, [ 768, False ] ], # 14
35
+
36
+ [ -1, 1, Conv, [ 512, 1, 1 ] ],
37
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
38
+ [ [ -1, 5 ], 1, Concat, [ 1 ] ], # cat backbone P4
39
+ [ -1, 3, C3, [ 512, False ] ], # 18
40
+
41
+ [ -1, 1, Conv, [ 256, 1, 1 ] ],
42
+ [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
43
+ [ [ -1, 3 ], 1, Concat, [ 1 ] ], # cat backbone P3
44
+ [ -1, 3, C3, [ 256, False ] ], # 22 (P3/8-small)
45
+
46
+ [ -1, 1, Conv, [ 256, 3, 2 ] ],
47
+ [ [ -1, 19 ], 1, Concat, [ 1 ] ], # cat head P4
48
+ [ -1, 3, C3, [ 512, False ] ], # 25 (P4/16-medium)
49
+
50
+ [ -1, 1, Conv, [ 512, 3, 2 ] ],
51
+ [ [ -1, 15 ], 1, Concat, [ 1 ] ], # cat head P5
52
+ [ -1, 3, C3, [ 768, False ] ], # 28 (P5/32-large)
53
+
54
+ [ -1, 1, Conv, [ 768, 3, 2 ] ],
55
+ [ [ -1, 11 ], 1, Concat, [ 1 ] ], # cat head P6
56
+ [ -1, 3, C3, [ 1024, False ] ], # 31 (P6/64-xlarge)
57
+
58
+ [ [ 22, 25, 28, 31 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
59
+ ]
60
+
utils/__init__.py ADDED
File without changes
utils/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (142 Bytes). View file
 
utils/__pycache__/autoanchor.cpython-39.pyc ADDED
Binary file (6 kB). View file
 
utils/__pycache__/datasets.cpython-39.pyc ADDED
Binary file (31.2 kB). View file
 
utils/__pycache__/general.cpython-39.pyc ADDED
Binary file (19.6 kB). View file
 
utils/__pycache__/google_utils.cpython-39.pyc ADDED
Binary file (3.35 kB). View file
 
utils/__pycache__/metrics.cpython-39.pyc ADDED
Binary file (6.72 kB). View file
 
utils/__pycache__/plots.cpython-39.pyc ADDED
Binary file (15.1 kB). View file
 
utils/__pycache__/torch_utils.cpython-39.pyc ADDED
Binary file (11 kB). View file
 
utils/activations.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Activation functions
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+
8
+ # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9
+ class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10
+ @staticmethod
11
+ def forward(x):
12
+ return x * torch.sigmoid(x)
13
+
14
+
15
+ class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16
+ @staticmethod
17
+ def forward(x):
18
+ # return x * F.hardsigmoid(x) # for torchscript and CoreML
19
+ return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20
+
21
+
22
+ class MemoryEfficientSwish(nn.Module):
23
+ class F(torch.autograd.Function):
24
+ @staticmethod
25
+ def forward(ctx, x):
26
+ ctx.save_for_backward(x)
27
+ return x * torch.sigmoid(x)
28
+
29
+ @staticmethod
30
+ def backward(ctx, grad_output):
31
+ x = ctx.saved_tensors[0]
32
+ sx = torch.sigmoid(x)
33
+ return grad_output * (sx * (1 + x * (1 - sx)))
34
+
35
+ def forward(self, x):
36
+ return self.F.apply(x)
37
+
38
+
39
+ # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40
+ class Mish(nn.Module):
41
+ @staticmethod
42
+ def forward(x):
43
+ return x * F.softplus(x).tanh()
44
+
45
+
46
+ class MemoryEfficientMish(nn.Module):
47
+ class F(torch.autograd.Function):
48
+ @staticmethod
49
+ def forward(ctx, x):
50
+ ctx.save_for_backward(x)
51
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52
+
53
+ @staticmethod
54
+ def backward(ctx, grad_output):
55
+ x = ctx.saved_tensors[0]
56
+ sx = torch.sigmoid(x)
57
+ fx = F.softplus(x).tanh()
58
+ return grad_output * (fx + x * sx * (1 - fx * fx))
59
+
60
+ def forward(self, x):
61
+ return self.F.apply(x)
62
+
63
+
64
+ # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65
+ class FReLU(nn.Module):
66
+ def __init__(self, c1, k=3): # ch_in, kernel
67
+ super().__init__()
68
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69
+ self.bn = nn.BatchNorm2d(c1)
70
+
71
+ def forward(self, x):
72
+ return torch.max(x, self.bn(self.conv(x)))
utils/autoanchor.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Auto-anchor utils
2
+
3
+ import numpy as np
4
+ import torch
5
+ import yaml
6
+ from scipy.cluster.vq import kmeans
7
+ from tqdm import tqdm
8
+
9
+ from utils.general import colorstr
10
+
11
+
12
+ def check_anchor_order(m):
13
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
14
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
15
+ da = a[-1] - a[0] # delta a
16
+ ds = m.stride[-1] - m.stride[0] # delta s
17
+ if da.sign() != ds.sign(): # same order
18
+ print('Reversing anchor order')
19
+ m.anchors[:] = m.anchors.flip(0)
20
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
21
+
22
+
23
+ def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
+ # Check anchor fit to data, recompute if necessary
25
+ prefix = colorstr('autoanchor: ')
26
+ print(f'\n{prefix}Analyzing anchors... ', end='')
27
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31
+
32
+ def metric(k): # compute metric
33
+ r = wh[:, None] / k[None]
34
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35
+ best = x.max(1)[0] # best_x
36
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37
+ bpr = (best > 1. / thr).float().mean() # best possible recall
38
+ return bpr, aat
39
+
40
+ bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
41
+ print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
42
+ if bpr < 0.98: # threshold to recompute
43
+ print('. Attempting to improve anchors, please wait...')
44
+ na = m.anchor_grid.numel() // 2 # number of anchors
45
+ new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
46
+ new_bpr = metric(new_anchors.reshape(-1, 2))[0]
47
+ if new_bpr > bpr: # replace anchors
48
+ new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
49
+ m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
50
+ m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
51
+ check_anchor_order(m)
52
+ print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
53
+ else:
54
+ print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
55
+ print('') # newline
56
+
57
+
58
+ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
59
+ """ Creates kmeans-evolved anchors from training dataset
60
+
61
+ Arguments:
62
+ path: path to dataset *.yaml, or a loaded dataset
63
+ n: number of anchors
64
+ img_size: image size used for training
65
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
66
+ gen: generations to evolve anchors using genetic algorithm
67
+ verbose: print all results
68
+
69
+ Return:
70
+ k: kmeans evolved anchors
71
+
72
+ Usage:
73
+ from utils.autoanchor import *; _ = kmean_anchors()
74
+ """
75
+ thr = 1. / thr
76
+ prefix = colorstr('autoanchor: ')
77
+
78
+ def metric(k, wh): # compute metrics
79
+ r = wh[:, None] / k[None]
80
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
81
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
82
+ return x, x.max(1)[0] # x, best_x
83
+
84
+ def anchor_fitness(k): # mutation fitness
85
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
86
+ return (best * (best > thr).float()).mean() # fitness
87
+
88
+ def print_results(k):
89
+ k = k[np.argsort(k.prod(1))] # sort small to large
90
+ x, best = metric(k, wh0)
91
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
92
+ print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
93
+ print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
94
+ f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
95
+ for i, x in enumerate(k):
96
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
97
+ return k
98
+
99
+ if isinstance(path, str): # *.yaml file
100
+ with open(path) as f:
101
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
102
+ from utils.datasets import LoadImagesAndLabels
103
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
104
+ else:
105
+ dataset = path # dataset
106
+
107
+ # Get label wh
108
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
109
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
110
+
111
+ # Filter
112
+ i = (wh0 < 3.0).any(1).sum()
113
+ if i:
114
+ print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
115
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
116
+ # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
117
+
118
+ # Kmeans calculation
119
+ print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
120
+ s = wh.std(0) # sigmas for whitening
121
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
122
+ k *= s
123
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
124
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
125
+ k = print_results(k)
126
+
127
+ # Plot
128
+ # k, d = [None] * 20, [None] * 20
129
+ # for i in tqdm(range(1, 21)):
130
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
131
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
132
+ # ax = ax.ravel()
133
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
134
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
135
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
136
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
137
+ # fig.savefig('wh.png', dpi=200)
138
+
139
+ # Evolve
140
+ npr = np.random
141
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
142
+ pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
143
+ for _ in pbar:
144
+ v = np.ones(sh)
145
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
146
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
147
+ kg = (k.copy() * v).clip(min=2.0)
148
+ fg = anchor_fitness(kg)
149
+ if fg > f:
150
+ f, k = fg, kg.copy()
151
+ pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
152
+ if verbose:
153
+ print_results(k)
154
+
155
+ return print_results(k)
utils/aws/__init__.py ADDED
File without changes
utils/aws/mime.sh ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2
+ # This script will run on every instance restart, not only on first start
3
+ # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4
+
5
+ Content-Type: multipart/mixed; boundary="//"
6
+ MIME-Version: 1.0
7
+
8
+ --//
9
+ Content-Type: text/cloud-config; charset="us-ascii"
10
+ MIME-Version: 1.0
11
+ Content-Transfer-Encoding: 7bit
12
+ Content-Disposition: attachment; filename="cloud-config.txt"
13
+
14
+ #cloud-config
15
+ cloud_final_modules:
16
+ - [scripts-user, always]
17
+
18
+ --//
19
+ Content-Type: text/x-shellscript; charset="us-ascii"
20
+ MIME-Version: 1.0
21
+ Content-Transfer-Encoding: 7bit
22
+ Content-Disposition: attachment; filename="userdata.txt"
23
+
24
+ #!/bin/bash
25
+ # --- paste contents of userdata.sh here ---
26
+ --//
utils/aws/resume.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Resume all interrupted trainings in yolov5/ dir including DDP trainings
2
+ # Usage: $ python utils/aws/resume.py
3
+
4
+ import os
5
+ import sys
6
+ from pathlib import Path
7
+
8
+ import torch
9
+ import yaml
10
+
11
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
12
+
13
+ port = 0 # --master_port
14
+ path = Path('').resolve()
15
+ for last in path.rglob('*/**/last.pt'):
16
+ ckpt = torch.load(last)
17
+ if ckpt['optimizer'] is None:
18
+ continue
19
+
20
+ # Load opt.yaml
21
+ with open(last.parent.parent / 'opt.yaml') as f:
22
+ opt = yaml.load(f, Loader=yaml.SafeLoader)
23
+
24
+ # Get device count
25
+ d = opt['device'].split(',') # devices
26
+ nd = len(d) # number of devices
27
+ ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28
+
29
+ if ddp: # multi-GPU
30
+ port += 1
31
+ cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32
+ else: # single-GPU
33
+ cmd = f'python train.py --resume {last}'
34
+
35
+ cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36
+ print(cmd)
37
+ os.system(cmd)
utils/aws/userdata.sh ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3
+ # This script will run only once on first instance start (for a re-start script see mime.sh)
4
+ # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5
+ # Use >300 GB SSD
6
+
7
+ cd home/ubuntu
8
+ if [ ! -d yolov5 ]; then
9
+ echo "Running first-time script." # install dependencies, download COCO, pull Docker
10
+ git clone https://github.com/ultralytics/yolov5 && sudo chmod -R 777 yolov5
11
+ cd yolov5
12
+ bash data/scripts/get_coco.sh && echo "Data done." &
13
+ sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
14
+ python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15
+ wait && echo "All tasks done." # finish background tasks
16
+ else
17
+ echo "Running re-start script." # resume interrupted runs
18
+ i=0
19
+ list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20
+ while IFS= read -r id; do
21
+ ((i++))
22
+ echo "restarting container $i: $id"
23
+ sudo docker start $id
24
+ # sudo docker exec -it $id python train.py --resume # single-GPU
25
+ sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26
+ done <<<"$list"
27
+ fi
utils/datasets.py ADDED
@@ -0,0 +1,1019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dataset utils and dataloaders
2
+
3
+ import glob
4
+ import logging
5
+ import math
6
+ import os
7
+ import random
8
+ import shutil
9
+ import time
10
+ from itertools import repeat
11
+ from multiprocessing.pool import ThreadPool
12
+ from pathlib import Path
13
+ from threading import Thread
14
+
15
+ import cv2
16
+ import numpy as np
17
+ import torch
18
+ import torch.nn.functional as F
19
+ from PIL import Image, ExifTags
20
+ from torch.utils.data import Dataset
21
+ from tqdm import tqdm
22
+
23
+ from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str
24
+ from utils.torch_utils import torch_distributed_zero_first
25
+
26
+ # Parameters
27
+ help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
28
+ img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
29
+ vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
30
+ logger = logging.getLogger(__name__)
31
+
32
+ # Get orientation exif tag
33
+ for orientation in ExifTags.TAGS.keys():
34
+ if ExifTags.TAGS[orientation] == 'Orientation':
35
+ break
36
+
37
+
38
+ def get_hash(files):
39
+ # Returns a single hash value of a list of files
40
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
41
+
42
+
43
+ def exif_size(img):
44
+ # Returns exif-corrected PIL size
45
+ s = img.size # (width, height)
46
+ try:
47
+ rotation = dict(img._getexif().items())[orientation]
48
+ if rotation == 6: # rotation 270
49
+ s = (s[1], s[0])
50
+ elif rotation == 8: # rotation 90
51
+ s = (s[1], s[0])
52
+ except:
53
+ pass
54
+
55
+ return s
56
+
57
+
58
+ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
59
+ rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
60
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
61
+ with torch_distributed_zero_first(rank):
62
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
63
+ augment=augment, # augment images
64
+ hyp=hyp, # augmentation hyperparameters
65
+ rect=rect, # rectangular training
66
+ cache_images=cache,
67
+ single_cls=opt.single_cls,
68
+ stride=int(stride),
69
+ pad=pad,
70
+ image_weights=image_weights,
71
+ prefix=prefix)
72
+
73
+ batch_size = min(batch_size, len(dataset))
74
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
75
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
76
+ loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
77
+ # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
78
+ dataloader = loader(dataset,
79
+ batch_size=batch_size,
80
+ num_workers=nw,
81
+ sampler=sampler,
82
+ pin_memory=True,
83
+ collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
84
+ return dataloader, dataset
85
+
86
+
87
+ class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
88
+ """ Dataloader that reuses workers
89
+
90
+ Uses same syntax as vanilla DataLoader
91
+ """
92
+
93
+ def __init__(self, *args, **kwargs):
94
+ super().__init__(*args, **kwargs)
95
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
96
+ self.iterator = super().__iter__()
97
+
98
+ def __len__(self):
99
+ return len(self.batch_sampler.sampler)
100
+
101
+ def __iter__(self):
102
+ for i in range(len(self)):
103
+ yield next(self.iterator)
104
+
105
+
106
+ class _RepeatSampler(object):
107
+ """ Sampler that repeats forever
108
+
109
+ Args:
110
+ sampler (Sampler)
111
+ """
112
+
113
+ def __init__(self, sampler):
114
+ self.sampler = sampler
115
+
116
+ def __iter__(self):
117
+ while True:
118
+ yield from iter(self.sampler)
119
+
120
+
121
+ class LoadImages: # for inference
122
+ def __init__(self, path, img_size=640):
123
+ p = str(Path(path)) # os-agnostic
124
+ p = os.path.abspath(p) # absolute path
125
+ if '*' in p:
126
+ files = sorted(glob.glob(p, recursive=True)) # glob
127
+ elif os.path.isdir(p):
128
+ files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
129
+ elif os.path.isfile(p):
130
+ files = [p] # files
131
+ else:
132
+ raise Exception(f'ERROR: {p} does not exist')
133
+
134
+ images = [x for x in files if x.split('.')[-1].lower() in img_formats]
135
+ videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
136
+ ni, nv = len(images), len(videos)
137
+
138
+ self.img_size = img_size
139
+ self.files = images + videos
140
+ self.nf = ni + nv # number of files
141
+ self.video_flag = [False] * ni + [True] * nv
142
+ self.mode = 'image'
143
+ if any(videos):
144
+ self.new_video(videos[0]) # new video
145
+ else:
146
+ self.cap = None
147
+ assert self.nf > 0, f'No images or videos found in {p}. ' \
148
+ f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
149
+
150
+ def __iter__(self):
151
+ self.count = 0
152
+ return self
153
+
154
+ def __next__(self):
155
+ if self.count == self.nf:
156
+ raise StopIteration
157
+ path = self.files[self.count]
158
+
159
+ if self.video_flag[self.count]:
160
+ # Read video
161
+ self.mode = 'video'
162
+ ret_val, img0 = self.cap.read()
163
+ if not ret_val:
164
+ self.count += 1
165
+ self.cap.release()
166
+ if self.count == self.nf: # last video
167
+ raise StopIteration
168
+ else:
169
+ path = self.files[self.count]
170
+ self.new_video(path)
171
+ ret_val, img0 = self.cap.read()
172
+
173
+ self.frame += 1
174
+ print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
175
+
176
+ else:
177
+ # Read image
178
+ self.count += 1
179
+ img0 = cv2.imread(path) # BGR
180
+ assert img0 is not None, 'Image Not Found ' + path
181
+ print(f'image {self.count}/{self.nf} {path}: ', end='')
182
+
183
+ # Padded resize
184
+ img = letterbox(img0, new_shape=self.img_size)[0]
185
+
186
+ # Convert
187
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
188
+ img = np.ascontiguousarray(img)
189
+
190
+ return path, img, img0, self.cap
191
+
192
+ def new_video(self, path):
193
+ self.frame = 0
194
+ self.cap = cv2.VideoCapture(path)
195
+ self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
196
+
197
+ def __len__(self):
198
+ return self.nf # number of files
199
+
200
+
201
+ class LoadWebcam: # for inference
202
+ def __init__(self, pipe='0', img_size=640):
203
+ self.img_size = img_size
204
+
205
+ if pipe.isnumeric():
206
+ pipe = eval(pipe) # local camera
207
+ # pipe = 'rtsp://192.168.1.64/1' # IP camera
208
+ # pipe = 'rtsp://username:[email protected]/1' # IP camera with login
209
+ # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
210
+
211
+ self.pipe = pipe
212
+ self.cap = cv2.VideoCapture(pipe) # video capture object
213
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
214
+
215
+ def __iter__(self):
216
+ self.count = -1
217
+ return self
218
+
219
+ def __next__(self):
220
+ self.count += 1
221
+ if cv2.waitKey(1) == ord('q'): # q to quit
222
+ self.cap.release()
223
+ cv2.destroyAllWindows()
224
+ raise StopIteration
225
+
226
+ # Read frame
227
+ if self.pipe == 0: # local camera
228
+ ret_val, img0 = self.cap.read()
229
+ img0 = cv2.flip(img0, 1) # flip left-right
230
+ else: # IP camera
231
+ n = 0
232
+ while True:
233
+ n += 1
234
+ self.cap.grab()
235
+ if n % 30 == 0: # skip frames
236
+ ret_val, img0 = self.cap.retrieve()
237
+ if ret_val:
238
+ break
239
+
240
+ # Print
241
+ assert ret_val, f'Camera Error {self.pipe}'
242
+ img_path = 'webcam.jpg'
243
+ print(f'webcam {self.count}: ', end='')
244
+
245
+ # Padded resize
246
+ img = letterbox(img0, new_shape=self.img_size)[0]
247
+
248
+ # Convert
249
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
250
+ img = np.ascontiguousarray(img)
251
+
252
+ return img_path, img, img0, None
253
+
254
+ def __len__(self):
255
+ return 0
256
+
257
+
258
+ class LoadStreams: # multiple IP or RTSP cameras
259
+ def __init__(self, sources='streams.txt', img_size=640):
260
+ self.mode = 'stream'
261
+ self.img_size = img_size
262
+
263
+ if os.path.isfile(sources):
264
+ with open(sources, 'r') as f:
265
+ sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
266
+ else:
267
+ sources = [sources]
268
+
269
+ n = len(sources)
270
+ self.imgs = [None] * n
271
+ self.sources = [clean_str(x) for x in sources] # clean source names for later
272
+ for i, s in enumerate(sources):
273
+ # Start the thread to read frames from the video stream
274
+ print(f'{i + 1}/{n}: {s}... ', end='')
275
+ cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
276
+ assert cap.isOpened(), f'Failed to open {s}'
277
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
278
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
279
+ fps = cap.get(cv2.CAP_PROP_FPS) % 100
280
+ _, self.imgs[i] = cap.read() # guarantee first frame
281
+ thread = Thread(target=self.update, args=([i, cap]), daemon=True)
282
+ print(f' success ({w}x{h} at {fps:.2f} FPS).')
283
+ thread.start()
284
+ print('') # newline
285
+
286
+ # check for common shapes
287
+ s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
288
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
289
+ if not self.rect:
290
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
291
+
292
+ def update(self, index, cap):
293
+ # Read next stream frame in a daemon thread
294
+ n = 0
295
+ while cap.isOpened():
296
+ n += 1
297
+ # _, self.imgs[index] = cap.read()
298
+ cap.grab()
299
+ if n == 4: # read every 4th frame
300
+ _, self.imgs[index] = cap.retrieve()
301
+ n = 0
302
+ time.sleep(0.01) # wait time
303
+
304
+ def __iter__(self):
305
+ self.count = -1
306
+ return self
307
+
308
+ def __next__(self):
309
+ self.count += 1
310
+ img0 = self.imgs.copy()
311
+ if cv2.waitKey(1) == ord('q'): # q to quit
312
+ cv2.destroyAllWindows()
313
+ raise StopIteration
314
+
315
+ # Letterbox
316
+ img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
317
+
318
+ # Stack
319
+ img = np.stack(img, 0)
320
+
321
+ # Convert
322
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
323
+ img = np.ascontiguousarray(img)
324
+
325
+ return self.sources, img, img0, None
326
+
327
+ def __len__(self):
328
+ return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
329
+
330
+
331
+ def img2label_paths(img_paths):
332
+ # Define label paths as a function of image paths
333
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
334
+ return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
335
+
336
+
337
+ class LoadImagesAndLabels(Dataset): # for training/testing
338
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
339
+ cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
340
+ self.img_size = img_size
341
+ self.augment = augment
342
+ self.hyp = hyp
343
+ self.image_weights = image_weights
344
+ self.rect = False if image_weights else rect
345
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
346
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
347
+ self.stride = stride
348
+
349
+ try:
350
+ f = [] # image files
351
+ for p in path if isinstance(path, list) else [path]:
352
+ p = Path(p) # os-agnostic
353
+ if p.is_dir(): # dir
354
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
355
+ elif p.is_file(): # file
356
+ with open(p, 'r') as t:
357
+ t = t.read().strip().splitlines()
358
+ parent = str(p.parent) + os.sep
359
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
360
+ else:
361
+ raise Exception(f'{prefix}{p} does not exist')
362
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
363
+ assert self.img_files, f'{prefix}No images found'
364
+ except Exception as e:
365
+ raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
366
+
367
+ # Check cache
368
+ self.label_files = img2label_paths(self.img_files) # labels
369
+ cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
370
+ if cache_path.is_file():
371
+ cache = torch.load(cache_path) # load
372
+ if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
373
+ cache = self.cache_labels(cache_path, prefix) # re-cache
374
+ else:
375
+ cache = self.cache_labels(cache_path, prefix) # cache
376
+
377
+ # Display cache
378
+ [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
379
+ desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
380
+ tqdm(None, desc=prefix + desc, total=n, initial=n)
381
+ assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
382
+
383
+ # Read cache
384
+ cache.pop('hash') # remove hash
385
+ labels, shapes = zip(*cache.values())
386
+ self.labels = list(labels)
387
+ self.shapes = np.array(shapes, dtype=np.float64)
388
+ self.img_files = list(cache.keys()) # update
389
+ self.label_files = img2label_paths(cache.keys()) # update
390
+ if single_cls:
391
+ for x in self.labels:
392
+ x[:, 0] = 0
393
+
394
+ n = len(shapes) # number of images
395
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
396
+ nb = bi[-1] + 1 # number of batches
397
+ self.batch = bi # batch index of image
398
+ self.n = n
399
+ self.indices = range(n)
400
+
401
+ # Rectangular Training
402
+ if self.rect:
403
+ # Sort by aspect ratio
404
+ s = self.shapes # wh
405
+ ar = s[:, 1] / s[:, 0] # aspect ratio
406
+ irect = ar.argsort()
407
+ self.img_files = [self.img_files[i] for i in irect]
408
+ self.label_files = [self.label_files[i] for i in irect]
409
+ self.labels = [self.labels[i] for i in irect]
410
+ self.shapes = s[irect] # wh
411
+ ar = ar[irect]
412
+
413
+ # Set training image shapes
414
+ shapes = [[1, 1]] * nb
415
+ for i in range(nb):
416
+ ari = ar[bi == i]
417
+ mini, maxi = ari.min(), ari.max()
418
+ if maxi < 1:
419
+ shapes[i] = [maxi, 1]
420
+ elif mini > 1:
421
+ shapes[i] = [1, 1 / mini]
422
+
423
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
424
+
425
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
426
+ self.imgs = [None] * n
427
+ if cache_images:
428
+ gb = 0 # Gigabytes of cached images
429
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
430
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
431
+ pbar = tqdm(enumerate(results), total=n)
432
+ for i, x in pbar:
433
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
434
+ gb += self.imgs[i].nbytes
435
+ pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
436
+
437
+ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
438
+ # Cache dataset labels, check images and read shapes
439
+ x = {} # dict
440
+ nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
441
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
442
+ for i, (im_file, lb_file) in enumerate(pbar):
443
+ try:
444
+ # verify images
445
+ im = Image.open(im_file)
446
+ im.verify() # PIL verify
447
+ shape = exif_size(im) # image size
448
+ assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
449
+
450
+ # verify labels
451
+ if os.path.isfile(lb_file):
452
+ nf += 1 # label found
453
+ with open(lb_file, 'r') as f:
454
+ l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
455
+ if len(l):
456
+ assert l.shape[1] == 5, 'labels require 5 columns each'
457
+ assert (l >= 0).all(), 'negative labels'
458
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
459
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
460
+ else:
461
+ ne += 1 # label empty
462
+ l = np.zeros((0, 5), dtype=np.float32)
463
+ else:
464
+ nm += 1 # label missing
465
+ l = np.zeros((0, 5), dtype=np.float32)
466
+ x[im_file] = [l, shape]
467
+ except Exception as e:
468
+ nc += 1
469
+ print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
470
+
471
+ pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' for images and labels... " \
472
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
473
+
474
+ if nf == 0:
475
+ print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
476
+
477
+ x['hash'] = get_hash(self.label_files + self.img_files)
478
+ x['results'] = [nf, nm, ne, nc, i + 1]
479
+ torch.save(x, path) # save for next time
480
+ logging.info(f'{prefix}New cache created: {path}')
481
+ return x
482
+
483
+ def __len__(self):
484
+ return len(self.img_files)
485
+
486
+ # def __iter__(self):
487
+ # self.count = -1
488
+ # print('ran dataset iter')
489
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
490
+ # return self
491
+
492
+ def __getitem__(self, index):
493
+ index = self.indices[index] # linear, shuffled, or image_weights
494
+
495
+ hyp = self.hyp
496
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
497
+ if mosaic:
498
+ # Load mosaic
499
+ img, labels = load_mosaic(self, index)
500
+ shapes = None
501
+
502
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
503
+ if random.random() < hyp['mixup']:
504
+ img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
505
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
506
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
507
+ labels = np.concatenate((labels, labels2), 0)
508
+
509
+ else:
510
+ # Load image
511
+ img, (h0, w0), (h, w) = load_image(self, index)
512
+
513
+ # Letterbox
514
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
515
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
516
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
517
+
518
+ labels = self.labels[index].copy()
519
+ if labels.size: # normalized xywh to pixel xyxy format
520
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
521
+
522
+ if self.augment:
523
+ # Augment imagespace
524
+ if not mosaic:
525
+ img, labels = random_perspective(img, labels,
526
+ degrees=hyp['degrees'],
527
+ translate=hyp['translate'],
528
+ scale=hyp['scale'],
529
+ shear=hyp['shear'],
530
+ perspective=hyp['perspective'])
531
+
532
+ # Augment colorspace
533
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
534
+
535
+ # Apply cutouts
536
+ # if random.random() < 0.9:
537
+ # labels = cutout(img, labels)
538
+
539
+ nL = len(labels) # number of labels
540
+ if nL:
541
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
542
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
543
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
544
+
545
+ if self.augment:
546
+ # flip up-down
547
+ if random.random() < hyp['flipud']:
548
+ img = np.flipud(img)
549
+ if nL:
550
+ labels[:, 2] = 1 - labels[:, 2]
551
+
552
+ # flip left-right
553
+ if random.random() < hyp['fliplr']:
554
+ img = np.fliplr(img)
555
+ if nL:
556
+ labels[:, 1] = 1 - labels[:, 1]
557
+
558
+ labels_out = torch.zeros((nL, 6))
559
+ if nL:
560
+ labels_out[:, 1:] = torch.from_numpy(labels)
561
+
562
+ # Convert
563
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
564
+ img = np.ascontiguousarray(img)
565
+
566
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
567
+
568
+ @staticmethod
569
+ def collate_fn(batch):
570
+ img, label, path, shapes = zip(*batch) # transposed
571
+ for i, l in enumerate(label):
572
+ l[:, 0] = i # add target image index for build_targets()
573
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
574
+
575
+ @staticmethod
576
+ def collate_fn4(batch):
577
+ img, label, path, shapes = zip(*batch) # transposed
578
+ n = len(shapes) // 4
579
+ img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
580
+
581
+ ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
582
+ wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
583
+ s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
584
+ for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
585
+ i *= 4
586
+ if random.random() < 0.5:
587
+ im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
588
+ 0].type(img[i].type())
589
+ l = label[i]
590
+ else:
591
+ im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
592
+ l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
593
+ img4.append(im)
594
+ label4.append(l)
595
+
596
+ for i, l in enumerate(label4):
597
+ l[:, 0] = i # add target image index for build_targets()
598
+
599
+ return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
600
+
601
+
602
+ # Ancillary functions --------------------------------------------------------------------------------------------------
603
+ def load_image(self, index):
604
+ # loads 1 image from dataset, returns img, original hw, resized hw
605
+ img = self.imgs[index]
606
+ if img is None: # not cached
607
+ path = self.img_files[index]
608
+ img = cv2.imread(path) # BGR
609
+ assert img is not None, 'Image Not Found ' + path
610
+ h0, w0 = img.shape[:2] # orig hw
611
+ r = self.img_size / max(h0, w0) # resize image to img_size
612
+ if r != 1: # always resize down, only resize up if training with augmentation
613
+ interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
614
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
615
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
616
+ else:
617
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
618
+
619
+
620
+ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
621
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
622
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
623
+ dtype = img.dtype # uint8
624
+
625
+ x = np.arange(0, 256, dtype=np.int16)
626
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
627
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
628
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
629
+
630
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
631
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
632
+
633
+ # Histogram equalization
634
+ # if random.random() < 0.2:
635
+ # for i in range(3):
636
+ # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
637
+
638
+
639
+ def load_mosaic(self, index):
640
+ # loads images in a 4-mosaic
641
+
642
+ labels4 = []
643
+ s = self.img_size
644
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
645
+ indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
646
+ for i, index in enumerate(indices):
647
+ # Load image
648
+ img, _, (h, w) = load_image(self, index)
649
+
650
+ # place img in img4
651
+ if i == 0: # top left
652
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
653
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
654
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
655
+ elif i == 1: # top right
656
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
657
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
658
+ elif i == 2: # bottom left
659
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
660
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
661
+ elif i == 3: # bottom right
662
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
663
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
664
+
665
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
666
+ padw = x1a - x1b
667
+ padh = y1a - y1b
668
+
669
+ # Labels
670
+ labels = self.labels[index].copy()
671
+ if labels.size:
672
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
673
+ labels4.append(labels)
674
+
675
+ # Concat/clip labels
676
+ if len(labels4):
677
+ labels4 = np.concatenate(labels4, 0)
678
+ np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_perspective
679
+ # img4, labels4 = replicate(img4, labels4) # replicate
680
+
681
+ # Augment
682
+ img4, labels4 = random_perspective(img4, labels4,
683
+ degrees=self.hyp['degrees'],
684
+ translate=self.hyp['translate'],
685
+ scale=self.hyp['scale'],
686
+ shear=self.hyp['shear'],
687
+ perspective=self.hyp['perspective'],
688
+ border=self.mosaic_border) # border to remove
689
+
690
+ return img4, labels4
691
+
692
+
693
+ def load_mosaic9(self, index):
694
+ # loads images in a 9-mosaic
695
+
696
+ labels9 = []
697
+ s = self.img_size
698
+ indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(8)] # 8 additional image indices
699
+ for i, index in enumerate(indices):
700
+ # Load image
701
+ img, _, (h, w) = load_image(self, index)
702
+
703
+ # place img in img9
704
+ if i == 0: # center
705
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
706
+ h0, w0 = h, w
707
+ c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
708
+ elif i == 1: # top
709
+ c = s, s - h, s + w, s
710
+ elif i == 2: # top right
711
+ c = s + wp, s - h, s + wp + w, s
712
+ elif i == 3: # right
713
+ c = s + w0, s, s + w0 + w, s + h
714
+ elif i == 4: # bottom right
715
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
716
+ elif i == 5: # bottom
717
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
718
+ elif i == 6: # bottom left
719
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
720
+ elif i == 7: # left
721
+ c = s - w, s + h0 - h, s, s + h0
722
+ elif i == 8: # top left
723
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
724
+
725
+ padx, pady = c[:2]
726
+ x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
727
+
728
+ # Labels
729
+ labels = self.labels[index].copy()
730
+ if labels.size:
731
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
732
+ labels9.append(labels)
733
+
734
+ # Image
735
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
736
+ hp, wp = h, w # height, width previous
737
+
738
+ # Offset
739
+ yc, xc = [int(random.uniform(0, s)) for x in self.mosaic_border] # mosaic center x, y
740
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
741
+
742
+ # Concat/clip labels
743
+ if len(labels9):
744
+ labels9 = np.concatenate(labels9, 0)
745
+ labels9[:, [1, 3]] -= xc
746
+ labels9[:, [2, 4]] -= yc
747
+
748
+ np.clip(labels9[:, 1:], 0, 2 * s, out=labels9[:, 1:]) # use with random_perspective
749
+ # img9, labels9 = replicate(img9, labels9) # replicate
750
+
751
+ # Augment
752
+ img9, labels9 = random_perspective(img9, labels9,
753
+ degrees=self.hyp['degrees'],
754
+ translate=self.hyp['translate'],
755
+ scale=self.hyp['scale'],
756
+ shear=self.hyp['shear'],
757
+ perspective=self.hyp['perspective'],
758
+ border=self.mosaic_border) # border to remove
759
+
760
+ return img9, labels9
761
+
762
+
763
+ def replicate(img, labels):
764
+ # Replicate labels
765
+ h, w = img.shape[:2]
766
+ boxes = labels[:, 1:].astype(int)
767
+ x1, y1, x2, y2 = boxes.T
768
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
769
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
770
+ x1b, y1b, x2b, y2b = boxes[i]
771
+ bh, bw = y2b - y1b, x2b - x1b
772
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
773
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
774
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
775
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
776
+
777
+ return img, labels
778
+
779
+
780
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
781
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
782
+ shape = img.shape[:2] # current shape [height, width]
783
+ if isinstance(new_shape, int):
784
+ new_shape = (new_shape, new_shape)
785
+
786
+ # Scale ratio (new / old)
787
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
788
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
789
+ r = min(r, 1.0)
790
+
791
+ # Compute padding
792
+ ratio = r, r # width, height ratios
793
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
794
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
795
+ if auto: # minimum rectangle
796
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
797
+ elif scaleFill: # stretch
798
+ dw, dh = 0.0, 0.0
799
+ new_unpad = (new_shape[1], new_shape[0])
800
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
801
+
802
+ dw /= 2 # divide padding into 2 sides
803
+ dh /= 2
804
+
805
+ if shape[::-1] != new_unpad: # resize
806
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
807
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
808
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
809
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
810
+ return img, ratio, (dw, dh)
811
+
812
+
813
+ def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
814
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
815
+ # targets = [cls, xyxy]
816
+
817
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
818
+ width = img.shape[1] + border[1] * 2
819
+
820
+ # Center
821
+ C = np.eye(3)
822
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
823
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
824
+
825
+ # Perspective
826
+ P = np.eye(3)
827
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
828
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
829
+
830
+ # Rotation and Scale
831
+ R = np.eye(3)
832
+ a = random.uniform(-degrees, degrees)
833
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
834
+ s = random.uniform(1 - scale, 1 + scale)
835
+ # s = 2 ** random.uniform(-scale, scale)
836
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
837
+
838
+ # Shear
839
+ S = np.eye(3)
840
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
841
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
842
+
843
+ # Translation
844
+ T = np.eye(3)
845
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
846
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
847
+
848
+ # Combined rotation matrix
849
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
850
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
851
+ if perspective:
852
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
853
+ else: # affine
854
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
855
+
856
+ # Visualize
857
+ # import matplotlib.pyplot as plt
858
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
859
+ # ax[0].imshow(img[:, :, ::-1]) # base
860
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
861
+
862
+ # Transform label coordinates
863
+ n = len(targets)
864
+ if n:
865
+ # warp points
866
+ xy = np.ones((n * 4, 3))
867
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
868
+ xy = xy @ M.T # transform
869
+ if perspective:
870
+ xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
871
+ else: # affine
872
+ xy = xy[:, :2].reshape(n, 8)
873
+
874
+ # create new boxes
875
+ x = xy[:, [0, 2, 4, 6]]
876
+ y = xy[:, [1, 3, 5, 7]]
877
+ xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
878
+
879
+ # # apply angle-based reduction of bounding boxes
880
+ # radians = a * math.pi / 180
881
+ # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
882
+ # x = (xy[:, 2] + xy[:, 0]) / 2
883
+ # y = (xy[:, 3] + xy[:, 1]) / 2
884
+ # w = (xy[:, 2] - xy[:, 0]) * reduction
885
+ # h = (xy[:, 3] - xy[:, 1]) * reduction
886
+ # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
887
+
888
+ # clip boxes
889
+ xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
890
+ xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
891
+
892
+ # filter candidates
893
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
894
+ targets = targets[i]
895
+ targets[:, 1:5] = xy[i]
896
+
897
+ return img, targets
898
+
899
+
900
+ def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
901
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
902
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
903
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
904
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
905
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
906
+
907
+
908
+ def cutout(image, labels):
909
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
910
+ h, w = image.shape[:2]
911
+
912
+ def bbox_ioa(box1, box2):
913
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
914
+ box2 = box2.transpose()
915
+
916
+ # Get the coordinates of bounding boxes
917
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
918
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
919
+
920
+ # Intersection area
921
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
922
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
923
+
924
+ # box2 area
925
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
926
+
927
+ # Intersection over box2 area
928
+ return inter_area / box2_area
929
+
930
+ # create random masks
931
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
932
+ for s in scales:
933
+ mask_h = random.randint(1, int(h * s))
934
+ mask_w = random.randint(1, int(w * s))
935
+
936
+ # box
937
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
938
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
939
+ xmax = min(w, xmin + mask_w)
940
+ ymax = min(h, ymin + mask_h)
941
+
942
+ # apply random color mask
943
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
944
+
945
+ # return unobscured labels
946
+ if len(labels) and s > 0.03:
947
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
948
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
949
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
950
+
951
+ return labels
952
+
953
+
954
+ def create_folder(path='./new'):
955
+ # Create folder
956
+ if os.path.exists(path):
957
+ shutil.rmtree(path) # delete output folder
958
+ os.makedirs(path) # make new output folder
959
+
960
+
961
+ def flatten_recursive(path='../coco128'):
962
+ # Flatten a recursive directory by bringing all files to top level
963
+ new_path = Path(path + '_flat')
964
+ create_folder(new_path)
965
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
966
+ shutil.copyfile(file, new_path / Path(file).name)
967
+
968
+
969
+ def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
970
+ # Convert detection dataset into classification dataset, with one directory per class
971
+
972
+ path = Path(path) # images dir
973
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
974
+ files = list(path.rglob('*.*'))
975
+ n = len(files) # number of files
976
+ for im_file in tqdm(files, total=n):
977
+ if im_file.suffix[1:] in img_formats:
978
+ # image
979
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
980
+ h, w = im.shape[:2]
981
+
982
+ # labels
983
+ lb_file = Path(img2label_paths([str(im_file)])[0])
984
+ if Path(lb_file).exists():
985
+ with open(lb_file, 'r') as f:
986
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
987
+
988
+ for j, x in enumerate(lb):
989
+ c = int(x[0]) # class
990
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
991
+ if not f.parent.is_dir():
992
+ f.parent.mkdir(parents=True)
993
+
994
+ b = x[1:] * [w, h, w, h] # box
995
+ # b[2:] = b[2:].max() # rectangle to square
996
+ b[2:] = b[2:] * 1.2 + 3 # pad
997
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
998
+
999
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
1000
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
1001
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
1002
+
1003
+
1004
+ def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
1005
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
1006
+ # Arguments
1007
+ path: Path to images directory
1008
+ weights: Train, val, test weights (list)
1009
+ """
1010
+ path = Path(path) # images dir
1011
+ files = list(path.rglob('*.*'))
1012
+ n = len(files) # number of files
1013
+ indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
1014
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
1015
+ [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
1016
+ for i, img in tqdm(zip(indices, files), total=n):
1017
+ if img.suffix[1:] in img_formats:
1018
+ with open(path / txt[i], 'a') as f:
1019
+ f.write(str(img) + '\n') # add image to txt file
utils/face_datasets.py ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import logging
3
+ import math
4
+ import os
5
+ import random
6
+ import shutil
7
+ import time
8
+ from itertools import repeat
9
+ from multiprocessing.pool import ThreadPool
10
+ from pathlib import Path
11
+ from threading import Thread
12
+
13
+ import cv2
14
+ import numpy as np
15
+ import torch
16
+ from PIL import Image, ExifTags
17
+ from torch.utils.data import Dataset
18
+ from tqdm import tqdm
19
+
20
+ from utils.general import xyxy2xywh, xywh2xyxy, clean_str
21
+ from utils.torch_utils import torch_distributed_zero_first
22
+
23
+
24
+ # Parameters
25
+ help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
26
+ img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng'] # acceptable image suffixes
27
+ vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
28
+ logger = logging.getLogger(__name__)
29
+
30
+ # Get orientation exif tag
31
+ for orientation in ExifTags.TAGS.keys():
32
+ if ExifTags.TAGS[orientation] == 'Orientation':
33
+ break
34
+
35
+ def get_hash(files):
36
+ # Returns a single hash value of a list of files
37
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
38
+
39
+ def img2label_paths(img_paths):
40
+ # Define label paths as a function of image paths
41
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
42
+ return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]
43
+
44
+ def exif_size(img):
45
+ # Returns exif-corrected PIL size
46
+ s = img.size # (width, height)
47
+ try:
48
+ rotation = dict(img._getexif().items())[orientation]
49
+ if rotation == 6: # rotation 270
50
+ s = (s[1], s[0])
51
+ elif rotation == 8: # rotation 90
52
+ s = (s[1], s[0])
53
+ except:
54
+ pass
55
+
56
+ return s
57
+
58
+ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
59
+ rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
60
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
61
+ with torch_distributed_zero_first(rank):
62
+ dataset = LoadFaceImagesAndLabels(path, imgsz, batch_size,
63
+ augment=augment, # augment images
64
+ hyp=hyp, # augmentation hyperparameters
65
+ rect=rect, # rectangular training
66
+ cache_images=cache,
67
+ single_cls=opt.single_cls,
68
+ stride=int(stride),
69
+ pad=pad,
70
+ image_weights=image_weights,
71
+ )
72
+
73
+ batch_size = min(batch_size, len(dataset))
74
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
75
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
76
+ loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
77
+ # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
78
+ dataloader = loader(dataset,
79
+ batch_size=batch_size,
80
+ num_workers=nw,
81
+ sampler=sampler,
82
+ pin_memory=True,
83
+ collate_fn=LoadFaceImagesAndLabels.collate_fn4 if quad else LoadFaceImagesAndLabels.collate_fn)
84
+ return dataloader, dataset
85
+ class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
86
+ """ Dataloader that reuses workers
87
+
88
+ Uses same syntax as vanilla DataLoader
89
+ """
90
+
91
+ def __init__(self, *args, **kwargs):
92
+ super().__init__(*args, **kwargs)
93
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
94
+ self.iterator = super().__iter__()
95
+
96
+ def __len__(self):
97
+ return len(self.batch_sampler.sampler)
98
+
99
+ def __iter__(self):
100
+ for i in range(len(self)):
101
+ yield next(self.iterator)
102
+ class _RepeatSampler(object):
103
+ """ Sampler that repeats forever
104
+
105
+ Args:
106
+ sampler (Sampler)
107
+ """
108
+
109
+ def __init__(self, sampler):
110
+ self.sampler = sampler
111
+
112
+ def __iter__(self):
113
+ while True:
114
+ yield from iter(self.sampler)
115
+
116
+ class LoadFaceImagesAndLabels(Dataset): # for training/testing
117
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
118
+ cache_images=False, single_cls=False, stride=32, pad=0.0, rank=-1):
119
+ self.img_size = img_size
120
+ self.augment = augment
121
+ self.hyp = hyp
122
+ self.image_weights = image_weights
123
+ self.rect = False if image_weights else rect
124
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
125
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
126
+ self.stride = stride
127
+
128
+ try:
129
+ f = [] # image files
130
+ for p in path if isinstance(path, list) else [path]:
131
+ p = Path(p) # os-agnostic
132
+ if p.is_dir(): # dir
133
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
134
+ elif p.is_file(): # file
135
+ with open(p, 'r') as t:
136
+ t = t.read().strip().splitlines()
137
+ parent = str(p.parent) + os.sep
138
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
139
+ else:
140
+ raise Exception('%s does not exist' % p)
141
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
142
+ assert self.img_files, 'No images found'
143
+ except Exception as e:
144
+ raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
145
+
146
+ # Check cache
147
+ self.label_files = img2label_paths(self.img_files) # labels
148
+ cache_path = Path(self.label_files[0]).parent.with_suffix('.cache') # cached labels
149
+ if cache_path.is_file():
150
+ cache = torch.load(cache_path) # load
151
+ if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache: # changed
152
+ cache = self.cache_labels(cache_path) # re-cache
153
+ else:
154
+ cache = self.cache_labels(cache_path) # cache
155
+
156
+ # Display cache
157
+ [nf, nm, ne, nc, n] = cache.pop('results') # found, missing, empty, corrupted, total
158
+ desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
159
+ tqdm(None, desc=desc, total=n, initial=n)
160
+ assert nf > 0 or not augment, f'No labels found in {cache_path}. Can not train without labels. See {help_url}'
161
+
162
+ # Read cache
163
+ cache.pop('hash') # remove hash
164
+ labels, shapes = zip(*cache.values())
165
+ self.labels = list(labels)
166
+ self.shapes = np.array(shapes, dtype=np.float64)
167
+ self.img_files = list(cache.keys()) # update
168
+ self.label_files = img2label_paths(cache.keys()) # update
169
+ if single_cls:
170
+ for x in self.labels:
171
+ x[:, 0] = 0
172
+
173
+ n = len(shapes) # number of images
174
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
175
+ nb = bi[-1] + 1 # number of batches
176
+ self.batch = bi # batch index of image
177
+ self.n = n
178
+ self.indices = range(n)
179
+
180
+ # Rectangular Training
181
+ if self.rect:
182
+ # Sort by aspect ratio
183
+ s = self.shapes # wh
184
+ ar = s[:, 1] / s[:, 0] # aspect ratio
185
+ irect = ar.argsort()
186
+ self.img_files = [self.img_files[i] for i in irect]
187
+ self.label_files = [self.label_files[i] for i in irect]
188
+ self.labels = [self.labels[i] for i in irect]
189
+ self.shapes = s[irect] # wh
190
+ ar = ar[irect]
191
+
192
+ # Set training image shapes
193
+ shapes = [[1, 1]] * nb
194
+ for i in range(nb):
195
+ ari = ar[bi == i]
196
+ mini, maxi = ari.min(), ari.max()
197
+ if maxi < 1:
198
+ shapes[i] = [maxi, 1]
199
+ elif mini > 1:
200
+ shapes[i] = [1, 1 / mini]
201
+
202
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
203
+
204
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
205
+ self.imgs = [None] * n
206
+ if cache_images:
207
+ gb = 0 # Gigabytes of cached images
208
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
209
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) # 8 threads
210
+ pbar = tqdm(enumerate(results), total=n)
211
+ for i, x in pbar:
212
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i)
213
+ gb += self.imgs[i].nbytes
214
+ pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
215
+
216
+ def cache_labels(self, path=Path('./labels.cache')):
217
+ # Cache dataset labels, check images and read shapes
218
+ x = {} # dict
219
+ nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
220
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
221
+ for i, (im_file, lb_file) in enumerate(pbar):
222
+ try:
223
+ # verify images
224
+ im = Image.open(im_file)
225
+ im.verify() # PIL verify
226
+ shape = exif_size(im) # image size
227
+ assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
228
+
229
+ # verify labels
230
+ if os.path.isfile(lb_file):
231
+ nf += 1 # label found
232
+ with open(lb_file, 'r') as f:
233
+ l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
234
+ if len(l):
235
+ assert l.shape[1] == 15, 'labels require 15 columns each'
236
+ assert (l >= -1).all(), 'negative labels'
237
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
238
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
239
+ else:
240
+ ne += 1 # label empty
241
+ l = np.zeros((0, 15), dtype=np.float32)
242
+ else:
243
+ nm += 1 # label missing
244
+ l = np.zeros((0, 15), dtype=np.float32)
245
+ x[im_file] = [l, shape]
246
+ except Exception as e:
247
+ nc += 1
248
+ print('WARNING: Ignoring corrupted image and/or label %s: %s' % (im_file, e))
249
+
250
+ pbar.desc = f"Scanning '{path.parent / path.stem}' for images and labels... " \
251
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
252
+
253
+ if nf == 0:
254
+ print(f'WARNING: No labels found in {path}. See {help_url}')
255
+
256
+ x['hash'] = get_hash(self.label_files + self.img_files)
257
+ x['results'] = [nf, nm, ne, nc, i + 1]
258
+ torch.save(x, path) # save for next time
259
+ logging.info(f"New cache created: {path}")
260
+ return x
261
+
262
+ def __len__(self):
263
+ return len(self.img_files)
264
+
265
+ # def __iter__(self):
266
+ # self.count = -1
267
+ # print('ran dataset iter')
268
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
269
+ # return self
270
+
271
+ def __getitem__(self, index):
272
+ index = self.indices[index] # linear, shuffled, or image_weights
273
+
274
+ hyp = self.hyp
275
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
276
+ if mosaic:
277
+ # Load mosaic
278
+ img, labels = load_mosaic_face(self, index)
279
+ shapes = None
280
+
281
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
282
+ if random.random() < hyp['mixup']:
283
+ img2, labels2 = load_mosaic_face(self, random.randint(0, self.n - 1))
284
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
285
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
286
+ labels = np.concatenate((labels, labels2), 0)
287
+
288
+ else:
289
+ # Load image
290
+ img, (h0, w0), (h, w) = load_image(self, index)
291
+
292
+ # Letterbox
293
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
294
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
295
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
296
+
297
+ # Load labels
298
+ labels = []
299
+ x = self.labels[index]
300
+ if x.size > 0:
301
+ # Normalized xywh to pixel xyxy format
302
+ labels = x.copy()
303
+ labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
304
+ labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
305
+ labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
306
+ labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
307
+
308
+ #labels[:, 5] = ratio[0] * w * x[:, 5] + pad[0] # pad width
309
+ labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 5] + pad[0]) + (
310
+ np.array(x[:, 5] > 0, dtype=np.int32) - 1)
311
+ labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 6] + pad[1]) + (
312
+ np.array(x[:, 6] > 0, dtype=np.int32) - 1)
313
+ labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 7] + pad[0]) + (
314
+ np.array(x[:, 7] > 0, dtype=np.int32) - 1)
315
+ labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 8] + pad[1]) + (
316
+ np.array(x[:, 8] > 0, dtype=np.int32) - 1)
317
+ labels[:, 9] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 9] + pad[0]) + (
318
+ np.array(x[:, 9] > 0, dtype=np.int32) - 1)
319
+ labels[:, 10] = np.array(x[:, 5] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 10] + pad[1]) + (
320
+ np.array(x[:, 10] > 0, dtype=np.int32) - 1)
321
+ labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 11] + pad[0]) + (
322
+ np.array(x[:, 11] > 0, dtype=np.int32) - 1)
323
+ labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 12] + pad[1]) + (
324
+ np.array(x[:, 12] > 0, dtype=np.int32) - 1)
325
+ labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (ratio[0] * w * x[:, 13] + pad[0]) + (
326
+ np.array(x[:, 13] > 0, dtype=np.int32) - 1)
327
+ labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (ratio[1] * h * x[:, 14] + pad[1]) + (
328
+ np.array(x[:, 14] > 0, dtype=np.int32) - 1)
329
+
330
+ if self.augment:
331
+ # Augment imagespace
332
+ if not mosaic:
333
+ img, labels = random_perspective(img, labels,
334
+ degrees=hyp['degrees'],
335
+ translate=hyp['translate'],
336
+ scale=hyp['scale'],
337
+ shear=hyp['shear'],
338
+ perspective=hyp['perspective'])
339
+
340
+ # Augment colorspace
341
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
342
+
343
+ # Apply cutouts
344
+ # if random.random() < 0.9:
345
+ # labels = cutout(img, labels)
346
+
347
+ nL = len(labels) # number of labels
348
+ if nL:
349
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
350
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
351
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
352
+
353
+ labels[:, [5, 7, 9, 11, 13]] /= img.shape[1] # normalized landmark x 0-1
354
+ labels[:, [5, 7, 9, 11, 13]] = np.where(labels[:, [5, 7, 9, 11, 13]] < 0, -1, labels[:, [5, 7, 9, 11, 13]])
355
+ labels[:, [6, 8, 10, 12, 14]] /= img.shape[0] # normalized landmark y 0-1
356
+ labels[:, [6, 8, 10, 12, 14]] = np.where(labels[:, [6, 8, 10, 12, 14]] < 0, -1, labels[:, [6, 8, 10, 12, 14]])
357
+
358
+ if self.augment:
359
+ # flip up-down
360
+ if random.random() < hyp['flipud']:
361
+ img = np.flipud(img)
362
+ if nL:
363
+ labels[:, 2] = 1 - labels[:, 2]
364
+
365
+ labels[:, 6] = np.where(labels[:,6] < 0, -1, 1 - labels[:, 6])
366
+ labels[:, 8] = np.where(labels[:, 8] < 0, -1, 1 - labels[:, 8])
367
+ labels[:, 10] = np.where(labels[:, 10] < 0, -1, 1 - labels[:, 10])
368
+ labels[:, 12] = np.where(labels[:, 12] < 0, -1, 1 - labels[:, 12])
369
+ labels[:, 14] = np.where(labels[:, 14] < 0, -1, 1 - labels[:, 14])
370
+
371
+ # flip left-right
372
+ if random.random() < hyp['fliplr']:
373
+ img = np.fliplr(img)
374
+ if nL:
375
+ labels[:, 1] = 1 - labels[:, 1]
376
+
377
+ labels[:, 5] = np.where(labels[:, 5] < 0, -1, 1 - labels[:, 5])
378
+ labels[:, 7] = np.where(labels[:, 7] < 0, -1, 1 - labels[:, 7])
379
+ labels[:, 9] = np.where(labels[:, 9] < 0, -1, 1 - labels[:, 9])
380
+ labels[:, 11] = np.where(labels[:, 11] < 0, -1, 1 - labels[:, 11])
381
+ labels[:, 13] = np.where(labels[:, 13] < 0, -1, 1 - labels[:, 13])
382
+
383
+ #左右镜像的时候,左眼、右眼, 左嘴角、右嘴角无法区分, 应该交换位置,便于网络学习
384
+ eye_left = np.copy(labels[:, [5, 6]])
385
+ mouth_left = np.copy(labels[:, [11, 12]])
386
+ labels[:, [5, 6]] = labels[:, [7, 8]]
387
+ labels[:, [7, 8]] = eye_left
388
+ labels[:, [11, 12]] = labels[:, [13, 14]]
389
+ labels[:, [13, 14]] = mouth_left
390
+
391
+ labels_out = torch.zeros((nL, 16))
392
+ if nL:
393
+ labels_out[:, 1:] = torch.from_numpy(labels)
394
+ #showlabels(img, labels[:, 1:5], labels[:, 5:15])
395
+
396
+ # Convert
397
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
398
+ img = np.ascontiguousarray(img)
399
+ #print(index, ' --- labels_out: ', labels_out)
400
+ #if nL:
401
+ #print( ' : landmarks : ', torch.max(labels_out[:, 5:15]), ' --- ', torch.min(labels_out[:, 5:15]))
402
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
403
+
404
+ @staticmethod
405
+ def collate_fn(batch):
406
+ img, label, path, shapes = zip(*batch) # transposed
407
+ for i, l in enumerate(label):
408
+ l[:, 0] = i # add target image index for build_targets()
409
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
410
+
411
+
412
+ def showlabels(img, boxs, landmarks):
413
+ for box in boxs:
414
+ x,y,w,h = box[0] * img.shape[1], box[1] * img.shape[0], box[2] * img.shape[1], box[3] * img.shape[0]
415
+ #cv2.rectangle(image, (x,y), (x+w,y+h), (0,255,0), 2)
416
+ cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
417
+
418
+ for landmark in landmarks:
419
+ #cv2.circle(img,(60,60),30,(0,0,255))
420
+ for i in range(5):
421
+ cv2.circle(img, (int(landmark[2*i] * img.shape[1]), int(landmark[2*i+1]*img.shape[0])), 3 ,(0,0,255), -1)
422
+ cv2.imshow('test', img)
423
+ cv2.waitKey(0)
424
+
425
+
426
+ def load_mosaic_face(self, index):
427
+ # loads images in a mosaic
428
+ labels4 = []
429
+ s = self.img_size
430
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
431
+ indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)] # 3 additional image indices
432
+ for i, index in enumerate(indices):
433
+ # Load image
434
+ img, _, (h, w) = load_image(self, index)
435
+
436
+ # place img in img4
437
+ if i == 0: # top left
438
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
439
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
440
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
441
+ elif i == 1: # top right
442
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
443
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
444
+ elif i == 2: # bottom left
445
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
446
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
447
+ elif i == 3: # bottom right
448
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
449
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
450
+
451
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
452
+ padw = x1a - x1b
453
+ padh = y1a - y1b
454
+
455
+ # Labels
456
+ x = self.labels[index]
457
+ labels = x.copy()
458
+ if x.size > 0: # Normalized xywh to pixel xyxy format
459
+ #box, x1,y1,x2,y2
460
+ labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
461
+ labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
462
+ labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
463
+ labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
464
+ #10 landmarks
465
+
466
+ labels[:, 5] = np.array(x[:, 5] > 0, dtype=np.int32) * (w * x[:, 5] + padw) + (np.array(x[:, 5] > 0, dtype=np.int32) - 1)
467
+ labels[:, 6] = np.array(x[:, 6] > 0, dtype=np.int32) * (h * x[:, 6] + padh) + (np.array(x[:, 6] > 0, dtype=np.int32) - 1)
468
+ labels[:, 7] = np.array(x[:, 7] > 0, dtype=np.int32) * (w * x[:, 7] + padw) + (np.array(x[:, 7] > 0, dtype=np.int32) - 1)
469
+ labels[:, 8] = np.array(x[:, 8] > 0, dtype=np.int32) * (h * x[:, 8] + padh) + (np.array(x[:, 8] > 0, dtype=np.int32) - 1)
470
+ labels[:, 9] = np.array(x[:, 9] > 0, dtype=np.int32) * (w * x[:, 9] + padw) + (np.array(x[:, 9] > 0, dtype=np.int32) - 1)
471
+ labels[:, 10] = np.array(x[:, 10] > 0, dtype=np.int32) * (h * x[:, 10] + padh) + (np.array(x[:, 10] > 0, dtype=np.int32) - 1)
472
+ labels[:, 11] = np.array(x[:, 11] > 0, dtype=np.int32) * (w * x[:, 11] + padw) + (np.array(x[:, 11] > 0, dtype=np.int32) - 1)
473
+ labels[:, 12] = np.array(x[:, 12] > 0, dtype=np.int32) * (h * x[:, 12] + padh) + (np.array(x[:, 12] > 0, dtype=np.int32) - 1)
474
+ labels[:, 13] = np.array(x[:, 13] > 0, dtype=np.int32) * (w * x[:, 13] + padw) + (np.array(x[:, 13] > 0, dtype=np.int32) - 1)
475
+ labels[:, 14] = np.array(x[:, 14] > 0, dtype=np.int32) * (h * x[:, 14] + padh) + (np.array(x[:, 14] > 0, dtype=np.int32) - 1)
476
+ labels4.append(labels)
477
+
478
+ # Concat/clip labels
479
+ if len(labels4):
480
+ labels4 = np.concatenate(labels4, 0)
481
+ np.clip(labels4[:, 1:5], 0, 2 * s, out=labels4[:, 1:5]) # use with random_perspective
482
+ # img4, labels4 = replicate(img4, labels4) # replicate
483
+
484
+ #landmarks
485
+ labels4[:, 5:] = np.where(labels4[:, 5:] < 0, -1, labels4[:, 5:])
486
+ labels4[:, 5:] = np.where(labels4[:, 5:] > 2 * s, -1, labels4[:, 5:])
487
+
488
+ labels4[:, 5] = np.where(labels4[:, 6] == -1, -1, labels4[:, 5])
489
+ labels4[:, 6] = np.where(labels4[:, 5] == -1, -1, labels4[:, 6])
490
+
491
+ labels4[:, 7] = np.where(labels4[:, 8] == -1, -1, labels4[:, 7])
492
+ labels4[:, 8] = np.where(labels4[:, 7] == -1, -1, labels4[:, 8])
493
+
494
+ labels4[:, 9] = np.where(labels4[:, 10] == -1, -1, labels4[:, 9])
495
+ labels4[:, 10] = np.where(labels4[:, 9] == -1, -1, labels4[:, 10])
496
+
497
+ labels4[:, 11] = np.where(labels4[:, 12] == -1, -1, labels4[:, 11])
498
+ labels4[:, 12] = np.where(labels4[:, 11] == -1, -1, labels4[:, 12])
499
+
500
+ labels4[:, 13] = np.where(labels4[:, 14] == -1, -1, labels4[:, 13])
501
+ labels4[:, 14] = np.where(labels4[:, 13] == -1, -1, labels4[:, 14])
502
+
503
+ # Augment
504
+ img4, labels4 = random_perspective(img4, labels4,
505
+ degrees=self.hyp['degrees'],
506
+ translate=self.hyp['translate'],
507
+ scale=self.hyp['scale'],
508
+ shear=self.hyp['shear'],
509
+ perspective=self.hyp['perspective'],
510
+ border=self.mosaic_border) # border to remove
511
+ return img4, labels4
512
+
513
+
514
+ # Ancillary functions --------------------------------------------------------------------------------------------------
515
+ def load_image(self, index):
516
+ # loads 1 image from dataset, returns img, original hw, resized hw
517
+ img = self.imgs[index]
518
+ if img is None: # not cached
519
+ path = self.img_files[index]
520
+ img = cv2.imread(path) # BGR
521
+ assert img is not None, 'Image Not Found ' + path
522
+ h0, w0 = img.shape[:2] # orig hw
523
+ r = self.img_size / max(h0, w0) # resize image to img_size
524
+ if r != 1: # always resize down, only resize up if training with augmentation
525
+ interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
526
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
527
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
528
+ else:
529
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
530
+
531
+
532
+ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
533
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
534
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
535
+ dtype = img.dtype # uint8
536
+
537
+ x = np.arange(0, 256, dtype=np.int16)
538
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
539
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
540
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
541
+
542
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
543
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
544
+
545
+ # Histogram equalization
546
+ # if random.random() < 0.2:
547
+ # for i in range(3):
548
+ # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
549
+
550
+ def replicate(img, labels):
551
+ # Replicate labels
552
+ h, w = img.shape[:2]
553
+ boxes = labels[:, 1:].astype(int)
554
+ x1, y1, x2, y2 = boxes.T
555
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
556
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
557
+ x1b, y1b, x2b, y2b = boxes[i]
558
+ bh, bw = y2b - y1b, x2b - x1b
559
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
560
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
561
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
562
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
563
+
564
+ return img, labels
565
+
566
+
567
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
568
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
569
+ shape = img.shape[:2] # current shape [height, width]
570
+ if isinstance(new_shape, int):
571
+ new_shape = (new_shape, new_shape)
572
+
573
+ # Scale ratio (new / old)
574
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
575
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
576
+ r = min(r, 1.0)
577
+
578
+ # Compute padding
579
+ ratio = r, r # width, height ratios
580
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
581
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
582
+ if auto: # minimum rectangle
583
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
584
+ elif scaleFill: # stretch
585
+ dw, dh = 0.0, 0.0
586
+ new_unpad = (new_shape[1], new_shape[0])
587
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
588
+
589
+ dw /= 2 # divide padding into 2 sides
590
+ dh /= 2
591
+
592
+ if shape[::-1] != new_unpad: # resize
593
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
594
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
595
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
596
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
597
+ return img, ratio, (dw, dh)
598
+
599
+
600
+ def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
601
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
602
+ # targets = [cls, xyxy]
603
+
604
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
605
+ width = img.shape[1] + border[1] * 2
606
+
607
+ # Center
608
+ C = np.eye(3)
609
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
610
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
611
+
612
+ # Perspective
613
+ P = np.eye(3)
614
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
615
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
616
+
617
+ # Rotation and Scale
618
+ R = np.eye(3)
619
+ a = random.uniform(-degrees, degrees)
620
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
621
+ s = random.uniform(1 - scale, 1 + scale)
622
+ # s = 2 ** random.uniform(-scale, scale)
623
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
624
+
625
+ # Shear
626
+ S = np.eye(3)
627
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
628
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
629
+
630
+ # Translation
631
+ T = np.eye(3)
632
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
633
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
634
+
635
+ # Combined rotation matrix
636
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
637
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
638
+ if perspective:
639
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
640
+ else: # affine
641
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
642
+
643
+ # Visualize
644
+ # import matplotlib.pyplot as plt
645
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
646
+ # ax[0].imshow(img[:, :, ::-1]) # base
647
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
648
+
649
+ # Transform label coordinates
650
+ n = len(targets)
651
+ if n:
652
+ # warp points
653
+ #xy = np.ones((n * 4, 3))
654
+ xy = np.ones((n * 9, 3))
655
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]].reshape(n * 9, 2) # x1y1, x2y2, x1y2, x2y1
656
+ xy = xy @ M.T # transform
657
+ if perspective:
658
+ xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 18) # rescale
659
+ else: # affine
660
+ xy = xy[:, :2].reshape(n, 18)
661
+
662
+ # create new boxes
663
+ x = xy[:, [0, 2, 4, 6]]
664
+ y = xy[:, [1, 3, 5, 7]]
665
+
666
+ landmarks = xy[:, [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]]
667
+ mask = np.array(targets[:, 5:] > 0, dtype=np.int32)
668
+ landmarks = landmarks * mask
669
+ landmarks = landmarks + mask - 1
670
+
671
+ landmarks = np.where(landmarks < 0, -1, landmarks)
672
+ landmarks[:, [0, 2, 4, 6, 8]] = np.where(landmarks[:, [0, 2, 4, 6, 8]] > width, -1, landmarks[:, [0, 2, 4, 6, 8]])
673
+ landmarks[:, [1, 3, 5, 7, 9]] = np.where(landmarks[:, [1, 3, 5, 7, 9]] > height, -1,landmarks[:, [1, 3, 5, 7, 9]])
674
+
675
+ landmarks[:, 0] = np.where(landmarks[:, 1] == -1, -1, landmarks[:, 0])
676
+ landmarks[:, 1] = np.where(landmarks[:, 0] == -1, -1, landmarks[:, 1])
677
+
678
+ landmarks[:, 2] = np.where(landmarks[:, 3] == -1, -1, landmarks[:, 2])
679
+ landmarks[:, 3] = np.where(landmarks[:, 2] == -1, -1, landmarks[:, 3])
680
+
681
+ landmarks[:, 4] = np.where(landmarks[:, 5] == -1, -1, landmarks[:, 4])
682
+ landmarks[:, 5] = np.where(landmarks[:, 4] == -1, -1, landmarks[:, 5])
683
+
684
+ landmarks[:, 6] = np.where(landmarks[:, 7] == -1, -1, landmarks[:, 6])
685
+ landmarks[:, 7] = np.where(landmarks[:, 6] == -1, -1, landmarks[:, 7])
686
+
687
+ landmarks[:, 8] = np.where(landmarks[:, 9] == -1, -1, landmarks[:, 8])
688
+ landmarks[:, 9] = np.where(landmarks[:, 8] == -1, -1, landmarks[:, 9])
689
+
690
+ targets[:,5:] = landmarks
691
+
692
+ xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
693
+
694
+ # # apply angle-based reduction of bounding boxes
695
+ # radians = a * math.pi / 180
696
+ # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
697
+ # x = (xy[:, 2] + xy[:, 0]) / 2
698
+ # y = (xy[:, 3] + xy[:, 1]) / 2
699
+ # w = (xy[:, 2] - xy[:, 0]) * reduction
700
+ # h = (xy[:, 3] - xy[:, 1]) * reduction
701
+ # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
702
+
703
+ # clip boxes
704
+ xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
705
+ xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
706
+
707
+ # filter candidates
708
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
709
+ targets = targets[i]
710
+ targets[:, 1:5] = xy[i]
711
+
712
+ return img, targets
713
+
714
+
715
+ def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1): # box1(4,n), box2(4,n)
716
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
717
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
718
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
719
+ ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
720
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
721
+
722
+
723
+ def cutout(image, labels):
724
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
725
+ h, w = image.shape[:2]
726
+
727
+ def bbox_ioa(box1, box2):
728
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
729
+ box2 = box2.transpose()
730
+
731
+ # Get the coordinates of bounding boxes
732
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
733
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
734
+
735
+ # Intersection area
736
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
737
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
738
+
739
+ # box2 area
740
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
741
+
742
+ # Intersection over box2 area
743
+ return inter_area / box2_area
744
+
745
+ # create random masks
746
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
747
+ for s in scales:
748
+ mask_h = random.randint(1, int(h * s))
749
+ mask_w = random.randint(1, int(w * s))
750
+
751
+ # box
752
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
753
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
754
+ xmax = min(w, xmin + mask_w)
755
+ ymax = min(h, ymin + mask_h)
756
+
757
+ # apply random color mask
758
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
759
+
760
+ # return unobscured labels
761
+ if len(labels) and s > 0.03:
762
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
763
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
764
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
765
+
766
+ return labels
767
+
768
+
769
+ def create_folder(path='./new'):
770
+ # Create folder
771
+ if os.path.exists(path):
772
+ shutil.rmtree(path) # delete output folder
773
+ os.makedirs(path) # make new output folder
774
+
775
+
776
+ def flatten_recursive(path='../coco128'):
777
+ # Flatten a recursive directory by bringing all files to top level
778
+ new_path = Path(path + '_flat')
779
+ create_folder(new_path)
780
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
781
+ shutil.copyfile(file, new_path / Path(file).name)
782
+
783
+
784
+ def extract_boxes(path='../coco128/'): # from utils.datasets import *; extract_boxes('../coco128')
785
+ # Convert detection dataset into classification dataset, with one directory per class
786
+
787
+ path = Path(path) # images dir
788
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
789
+ files = list(path.rglob('*.*'))
790
+ n = len(files) # number of files
791
+ for im_file in tqdm(files, total=n):
792
+ if im_file.suffix[1:] in img_formats:
793
+ # image
794
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
795
+ h, w = im.shape[:2]
796
+
797
+ # labels
798
+ lb_file = Path(img2label_paths([str(im_file)])[0])
799
+ if Path(lb_file).exists():
800
+ with open(lb_file, 'r') as f:
801
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
802
+
803
+ for j, x in enumerate(lb):
804
+ c = int(x[0]) # class
805
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
806
+ if not f.parent.is_dir():
807
+ f.parent.mkdir(parents=True)
808
+
809
+ b = x[1:] * [w, h, w, h] # box
810
+ # b[2:] = b[2:].max() # rectangle to square
811
+ b[2:] = b[2:] * 1.2 + 3 # pad
812
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
813
+
814
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
815
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
816
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
817
+
818
+
819
+ def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)): # from utils.datasets import *; autosplit('../coco128')
820
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
821
+ # Arguments
822
+ path: Path to images directory
823
+ weights: Train, val, test weights (list)
824
+ """
825
+ path = Path(path) # images dir
826
+ files = list(path.rglob('*.*'))
827
+ n = len(files) # number of files
828
+ indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
829
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
830
+ [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
831
+ for i, img in tqdm(zip(indices, files), total=n):
832
+ if img.suffix[1:] in img_formats:
833
+ with open(path / txt[i], 'a') as f:
834
+ f.write(str(img) + '\n') # add image to txt file
utils/general.py ADDED
@@ -0,0 +1,646 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # General utils
2
+
3
+ import glob
4
+ import logging
5
+ import math
6
+ import os
7
+ import random
8
+ import re
9
+ import subprocess
10
+ import time
11
+ from pathlib import Path
12
+
13
+ import cv2
14
+ import numpy as np
15
+ import torch
16
+ import torchvision
17
+ import yaml
18
+
19
+ from utils.google_utils import gsutil_getsize
20
+ from utils.metrics import fitness
21
+ from utils.torch_utils import init_torch_seeds
22
+
23
+ # Settings
24
+ torch.set_printoptions(linewidth=320, precision=5, profile='long')
25
+ np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
26
+ cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
27
+ os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
28
+
29
+
30
+ def set_logging(rank=-1):
31
+ logging.basicConfig(
32
+ format="%(message)s",
33
+ level=logging.INFO if rank in [-1, 0] else logging.WARN)
34
+
35
+
36
+ def init_seeds(seed=0):
37
+ # Initialize random number generator (RNG) seeds
38
+ random.seed(seed)
39
+ np.random.seed(seed)
40
+ init_torch_seeds(seed)
41
+
42
+
43
+ def get_latest_run(search_dir='.'):
44
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
45
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
46
+ return max(last_list, key=os.path.getctime) if last_list else ''
47
+
48
+
49
+ def check_online():
50
+ # Check internet connectivity
51
+ import socket
52
+ try:
53
+ socket.create_connection(("1.1.1.1", 53)) # check host accesability
54
+ return True
55
+ except OSError:
56
+ return False
57
+
58
+
59
+ def check_git_status():
60
+ # Recommend 'git pull' if code is out of date
61
+ print(colorstr('github: '), end='')
62
+ try:
63
+ assert Path('.git').exists(), 'skipping check (not a git repository)'
64
+ assert not Path('/workspace').exists(), 'skipping check (Docker image)' # not Path('/.dockerenv').exists()
65
+ assert check_online(), 'skipping check (offline)'
66
+
67
+ cmd = 'git fetch && git config --get remote.origin.url' # github repo url
68
+ url = subprocess.check_output(cmd, shell=True).decode()[:-1]
69
+ cmd = 'git rev-list $(git rev-parse --abbrev-ref HEAD)..origin/master --count' # commits behind
70
+ n = int(subprocess.check_output(cmd, shell=True))
71
+ if n > 0:
72
+ print(f"⚠️ WARNING: code is out of date by {n} {'commits' if n > 1 else 'commmit'}. "
73
+ f"Use 'git pull' to update or 'git clone {url}' to download latest.")
74
+ else:
75
+ print(f'up to date with {url} ✅')
76
+ except Exception as e:
77
+ print(e)
78
+
79
+
80
+ def check_requirements(file='requirements.txt'):
81
+ # Check installed dependencies meet requirements
82
+ import pkg_resources
83
+ requirements = pkg_resources.parse_requirements(Path(file).open())
84
+ requirements = [x.name + ''.join(*x.specs) if len(x.specs) else x.name for x in requirements]
85
+ pkg_resources.require(requirements) # DistributionNotFound or VersionConflict exception if requirements not met
86
+
87
+
88
+ def check_img_size(img_size, s=32):
89
+ # Verify img_size is a multiple of stride s
90
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
91
+ if new_size != img_size:
92
+ print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
93
+ return new_size
94
+
95
+
96
+ def check_file(file):
97
+ # Search for file if not found
98
+ if os.path.isfile(file) or file == '':
99
+ return file
100
+ else:
101
+ files = glob.glob('./**/' + file, recursive=True) # find file
102
+ assert len(files), 'File Not Found: %s' % file # assert file was found
103
+ assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
104
+ return files[0] # return file
105
+
106
+
107
+ def check_dataset(dict):
108
+ # Download dataset if not found locally
109
+ val, s = dict.get('val'), dict.get('download')
110
+ if val and len(val):
111
+ val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
112
+ if not all(x.exists() for x in val):
113
+ print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
114
+ if s and len(s): # download script
115
+ print('Downloading %s ...' % s)
116
+ if s.startswith('http') and s.endswith('.zip'): # URL
117
+ f = Path(s).name # filename
118
+ torch.hub.download_url_to_file(s, f)
119
+ r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
120
+ else: # bash script
121
+ r = os.system(s)
122
+ print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
123
+ else:
124
+ raise Exception('Dataset not found.')
125
+
126
+
127
+ def make_divisible(x, divisor):
128
+ # Returns x evenly divisible by divisor
129
+ return math.ceil(x / divisor) * divisor
130
+
131
+
132
+ def clean_str(s):
133
+ # Cleans a string by replacing special characters with underscore _
134
+ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,��´><+]", repl="_", string=s)
135
+
136
+
137
+ def one_cycle(y1=0.0, y2=1.0, steps=100):
138
+ # lambda function for sinusoidal ramp from y1 to y2
139
+ return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
140
+
141
+
142
+ def colorstr(*input):
143
+ # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
144
+ *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
145
+ colors = {'black': '\033[30m', # basic colors
146
+ 'red': '\033[31m',
147
+ 'green': '\033[32m',
148
+ 'yellow': '\033[33m',
149
+ 'blue': '\033[34m',
150
+ 'magenta': '\033[35m',
151
+ 'cyan': '\033[36m',
152
+ 'white': '\033[37m',
153
+ 'bright_black': '\033[90m', # bright colors
154
+ 'bright_red': '\033[91m',
155
+ 'bright_green': '\033[92m',
156
+ 'bright_yellow': '\033[93m',
157
+ 'bright_blue': '\033[94m',
158
+ 'bright_magenta': '\033[95m',
159
+ 'bright_cyan': '\033[96m',
160
+ 'bright_white': '\033[97m',
161
+ 'end': '\033[0m', # misc
162
+ 'bold': '\033[1m',
163
+ 'underline': '\033[4m'}
164
+ return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
165
+
166
+
167
+ def labels_to_class_weights(labels, nc=80):
168
+ # Get class weights (inverse frequency) from training labels
169
+ if labels[0] is None: # no labels loaded
170
+ return torch.Tensor()
171
+
172
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
173
+ classes = labels[:, 0].astype(np.int) # labels = [class xywh]
174
+ weights = np.bincount(classes, minlength=nc) # occurrences per class
175
+
176
+ # Prepend gridpoint count (for uCE training)
177
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
178
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
179
+
180
+ weights[weights == 0] = 1 # replace empty bins with 1
181
+ weights = 1 / weights # number of targets per class
182
+ weights /= weights.sum() # normalize
183
+ return torch.from_numpy(weights)
184
+
185
+
186
+ def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
187
+ # Produces image weights based on class_weights and image contents
188
+ class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
189
+ image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
190
+ # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
191
+ return image_weights
192
+
193
+
194
+ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
195
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
196
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
197
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
198
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
199
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
200
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
201
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
202
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
203
+ return x
204
+
205
+
206
+ def xyxy2xywh(x):
207
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
208
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
209
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
210
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
211
+ y[:, 2] = x[:, 2] - x[:, 0] # width
212
+ y[:, 3] = x[:, 3] - x[:, 1] # height
213
+ return y
214
+
215
+
216
+ def xywh2xyxy(x):
217
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
218
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
219
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
220
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
221
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
222
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
223
+ return y
224
+
225
+
226
+ def xywhn2xyxy(x, w=640, h=640, padw=32, padh=32):
227
+ # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
228
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
229
+ y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
230
+ y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
231
+ y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
232
+ y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
233
+ return y
234
+
235
+
236
+ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
237
+ # Rescale coords (xyxy) from img1_shape to img0_shape
238
+ if ratio_pad is None: # calculate from img0_shape
239
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
240
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
241
+ else:
242
+ gain = ratio_pad[0][0]
243
+ pad = ratio_pad[1]
244
+
245
+ coords[:, [0, 2]] -= pad[0] # x padding
246
+ coords[:, [1, 3]] -= pad[1] # y padding
247
+ coords[:, :4] /= gain
248
+ clip_coords(coords, img0_shape)
249
+ return coords
250
+
251
+
252
+ def clip_coords(boxes, img_shape):
253
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
254
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
255
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
256
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
257
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
258
+
259
+
260
+ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
261
+ # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
262
+ box2 = box2.T
263
+
264
+ # Get the coordinates of bounding boxes
265
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
266
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
267
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
268
+ else: # transform from xywh to xyxy
269
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
270
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
271
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
272
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
273
+
274
+ # Intersection area
275
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
276
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
277
+
278
+ # Union Area
279
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
280
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
281
+ union = w1 * h1 + w2 * h2 - inter + eps
282
+
283
+ iou = inter / union
284
+ if GIoU or DIoU or CIoU:
285
+ # convex (smallest enclosing box) width
286
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
287
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
288
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
289
+ c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
290
+ rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
291
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
292
+ if DIoU:
293
+ return iou - rho2 / c2 # DIoU
294
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
295
+ v = (4 / math.pi ** 2) * \
296
+ torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
297
+ with torch.no_grad():
298
+ alpha = v / ((1 + eps) - iou + v)
299
+ return iou - (rho2 / c2 + v * alpha) # CIoU
300
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
301
+ c_area = cw * ch + eps # convex area
302
+ return iou - (c_area - union) / c_area # GIoU
303
+ else:
304
+ return iou # IoU
305
+
306
+
307
+ def box_iou(box1, box2):
308
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
309
+ """
310
+ Return intersection-over-union (Jaccard index) of boxes.
311
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
312
+ Arguments:
313
+ box1 (Tensor[N, 4])
314
+ box2 (Tensor[M, 4])
315
+ Returns:
316
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
317
+ IoU values for every element in boxes1 and boxes2
318
+ """
319
+
320
+ def box_area(box):
321
+ # box = 4xn
322
+ return (box[2] - box[0]) * (box[3] - box[1])
323
+
324
+ area1 = box_area(box1.T)
325
+ area2 = box_area(box2.T)
326
+
327
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
328
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
329
+ torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
330
+ # iou = inter / (area1 + area2 - inter)
331
+ return inter / (area1[:, None] + area2 - inter)
332
+
333
+
334
+ def wh_iou(wh1, wh2):
335
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
336
+ wh1 = wh1[:, None] # [N,1,2]
337
+ wh2 = wh2[None] # [1,M,2]
338
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
339
+ # iou = inter / (area1 + area2 - inter)
340
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter)
341
+
342
+ def jaccard_diou(box_a, box_b, iscrowd:bool=False):
343
+ use_batch = True
344
+ if box_a.dim() == 2:
345
+ use_batch = False
346
+ box_a = box_a[None, ...]
347
+ box_b = box_b[None, ...]
348
+
349
+ inter = intersect(box_a, box_b)
350
+ area_a = ((box_a[:, :, 2]-box_a[:, :, 0]) *
351
+ (box_a[:, :, 3]-box_a[:, :, 1])).unsqueeze(2).expand_as(inter) # [A,B]
352
+ area_b = ((box_b[:, :, 2]-box_b[:, :, 0]) *
353
+ (box_b[:, :, 3]-box_b[:, :, 1])).unsqueeze(1).expand_as(inter) # [A,B]
354
+ union = area_a + area_b - inter
355
+ x1 = ((box_a[:, :, 2]+box_a[:, :, 0]) / 2).unsqueeze(2).expand_as(inter)
356
+ y1 = ((box_a[:, :, 3]+box_a[:, :, 1]) / 2).unsqueeze(2).expand_as(inter)
357
+ x2 = ((box_b[:, :, 2]+box_b[:, :, 0]) / 2).unsqueeze(1).expand_as(inter)
358
+ y2 = ((box_b[:, :, 3]+box_b[:, :, 1]) / 2).unsqueeze(1).expand_as(inter)
359
+
360
+ t1 = box_a[:, :, 1].unsqueeze(2).expand_as(inter)
361
+ b1 = box_a[:, :, 3].unsqueeze(2).expand_as(inter)
362
+ l1 = box_a[:, :, 0].unsqueeze(2).expand_as(inter)
363
+ r1 = box_a[:, :, 2].unsqueeze(2).expand_as(inter)
364
+
365
+ t2 = box_b[:, :, 1].unsqueeze(1).expand_as(inter)
366
+ b2 = box_b[:, :, 3].unsqueeze(1).expand_as(inter)
367
+ l2 = box_b[:, :, 0].unsqueeze(1).expand_as(inter)
368
+ r2 = box_b[:, :, 2].unsqueeze(1).expand_as(inter)
369
+
370
+ cr = torch.max(r1, r2)
371
+ cl = torch.min(l1, l2)
372
+ ct = torch.min(t1, t2)
373
+ cb = torch.max(b1, b2)
374
+ D = (((x2 - x1)**2 + (y2 - y1)**2) / ((cr-cl)**2 + (cb-ct)**2 + 1e-7))
375
+ out = inter / area_a if iscrowd else inter / (union + 1e-7) - D ** 0.7
376
+ return out if use_batch else out.squeeze(0)
377
+
378
+
379
+ def non_max_suppression_face(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
380
+ """Performs Non-Maximum Suppression (NMS) on inference results
381
+ Returns:
382
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
383
+ """
384
+
385
+ nc = prediction.shape[2] - 15 # number of classes
386
+ xc = prediction[..., 4] > conf_thres # candidates
387
+
388
+ # Settings
389
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
390
+ time_limit = 10.0 # seconds to quit after
391
+ redundant = True # require redundant detections
392
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
393
+ merge = False # use merge-NMS
394
+
395
+ t = time.time()
396
+ output = [torch.zeros((0, 16), device=prediction.device)] * prediction.shape[0]
397
+ for xi, x in enumerate(prediction): # image index, image inference
398
+ # Apply constraints
399
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
400
+ x = x[xc[xi]] # confidence
401
+
402
+ # Cat apriori labels if autolabelling
403
+ if labels and len(labels[xi]):
404
+ l = labels[xi]
405
+ v = torch.zeros((len(l), nc + 15), device=x.device)
406
+ v[:, :4] = l[:, 1:5] # box
407
+ v[:, 4] = 1.0 # conf
408
+ v[range(len(l)), l[:, 0].long() + 15] = 1.0 # cls
409
+ x = torch.cat((x, v), 0)
410
+
411
+ # If none remain process next image
412
+ if not x.shape[0]:
413
+ continue
414
+
415
+ # Compute conf
416
+ x[:, 15:] *= x[:, 4:5] # conf = obj_conf * cls_conf
417
+
418
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
419
+ box = xywh2xyxy(x[:, :4])
420
+
421
+ # Detections matrix nx6 (xyxy, conf, landmarks, cls)
422
+ if multi_label:
423
+ i, j = (x[:, 15:] > conf_thres).nonzero(as_tuple=False).T
424
+ x = torch.cat((box[i], x[i, j + 15, None], x[i, 5:15] ,j[:, None].float()), 1)
425
+ else: # best class only
426
+ conf, j = x[:, 15:].max(1, keepdim=True)
427
+ x = torch.cat((box, conf, x[:, 5:15], j.float()), 1)[conf.view(-1) > conf_thres]
428
+
429
+ # Filter by class
430
+ if classes is not None:
431
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
432
+
433
+ # If none remain process next image
434
+ n = x.shape[0] # number of boxes
435
+ if not n:
436
+ continue
437
+
438
+ # Batched NMS
439
+ c = x[:, 15:16] * (0 if agnostic else max_wh) # classes
440
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
441
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
442
+ #if i.shape[0] > max_det: # limit detections
443
+ # i = i[:max_det]
444
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
445
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
446
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
447
+ weights = iou * scores[None] # box weights
448
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
449
+ if redundant:
450
+ i = i[iou.sum(1) > 1] # require redundancy
451
+
452
+ output[xi] = x[i]
453
+ if (time.time() - t) > time_limit:
454
+ break # time limit exceeded
455
+
456
+ return output
457
+
458
+
459
+ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
460
+ """Performs Non-Maximum Suppression (NMS) on inference results
461
+
462
+ Returns:
463
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
464
+ """
465
+
466
+ nc = prediction.shape[2] - 5 # number of classes
467
+ xc = prediction[..., 4] > conf_thres # candidates
468
+
469
+ # Settings
470
+ # (pixels) minimum and maximum box width and height
471
+ min_wh, max_wh = 2, 4096
472
+ #max_det = 300 # maximum number of detections per image
473
+ #max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
474
+ time_limit = 10.0 # seconds to quit after
475
+ redundant = True # require redundant detections
476
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
477
+ merge = False # use merge-NMS
478
+
479
+ t = time.time()
480
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
481
+ for xi, x in enumerate(prediction): # image index, image inference
482
+ # Apply constraints
483
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
484
+ x = x[xc[xi]] # confidence
485
+
486
+ # Cat apriori labels if autolabelling
487
+ if labels and len(labels[xi]):
488
+ l = labels[xi]
489
+ v = torch.zeros((len(l), nc + 5), device=x.device)
490
+ v[:, :4] = l[:, 1:5] # box
491
+ v[:, 4] = 1.0 # conf
492
+ v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
493
+ x = torch.cat((x, v), 0)
494
+
495
+ # If none remain process next image
496
+ if not x.shape[0]:
497
+ continue
498
+
499
+ # Compute conf
500
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
501
+
502
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
503
+ box = xywh2xyxy(x[:, :4])
504
+
505
+ # Detections matrix nx6 (xyxy, conf, cls)
506
+ if multi_label:
507
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
508
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
509
+ else: # best class only
510
+ conf, j = x[:, 5:].max(1, keepdim=True)
511
+ x = torch.cat((box, conf, j.float()), 1)[
512
+ conf.view(-1) > conf_thres]
513
+
514
+ # Filter by class
515
+ if classes is not None:
516
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
517
+
518
+ # Apply finite constraint
519
+ # if not torch.isfinite(x).all():
520
+ # x = x[torch.isfinite(x).all(1)]
521
+
522
+ # Check shape
523
+ n = x.shape[0] # number of boxes
524
+ if not n: # no boxes
525
+ continue
526
+ #elif n > max_nms: # excess boxes
527
+ # x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
528
+ x = x[x[:, 4].argsort(descending=True)] # sort by confidence
529
+
530
+ # Batched NMS
531
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
532
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
533
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
534
+ #if i.shape[0] > max_det: # limit detections
535
+ # i = i[:max_det]
536
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
537
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
538
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
539
+ weights = iou * scores[None] # box weights
540
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
541
+ if redundant:
542
+ i = i[iou.sum(1) > 1] # require redundancy
543
+
544
+ output[xi] = x[i]
545
+ if (time.time() - t) > time_limit:
546
+ print(f'WARNING: NMS time limit {time_limit}s exceeded')
547
+ break # time limit exceeded
548
+
549
+ return output
550
+
551
+
552
+ def strip_optimizer(f='weights/best.pt', s=''): # from utils.general import *; strip_optimizer()
553
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
554
+ x = torch.load(f, map_location=torch.device('cpu'))
555
+ for key in 'optimizer', 'training_results', 'wandb_id':
556
+ x[key] = None
557
+ x['epoch'] = -1
558
+ x['model'].half() # to FP16
559
+ for p in x['model'].parameters():
560
+ p.requires_grad = False
561
+ torch.save(x, s or f)
562
+ mb = os.path.getsize(s or f) / 1E6 # filesize
563
+ print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
564
+
565
+
566
+ def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
567
+ # Print mutation results to evolve.txt (for use with train.py --evolve)
568
+ a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
569
+ b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
570
+ c = '%10.4g' * len(results) % results # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
571
+ print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
572
+
573
+ if bucket:
574
+ url = 'gs://%s/evolve.txt' % bucket
575
+ if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
576
+ os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
577
+
578
+ with open('evolve.txt', 'a') as f: # append result
579
+ f.write(c + b + '\n')
580
+ x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
581
+ x = x[np.argsort(-fitness(x))] # sort
582
+ np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
583
+
584
+ # Save yaml
585
+ for i, k in enumerate(hyp.keys()):
586
+ hyp[k] = float(x[0, i + 7])
587
+ with open(yaml_file, 'w') as f:
588
+ results = tuple(x[0, :7])
589
+ c = '%10.4g' * len(results) % results # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
590
+ f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
591
+ yaml.dump(hyp, f, sort_keys=False)
592
+
593
+ if bucket:
594
+ os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
595
+
596
+
597
+ def apply_classifier(x, model, img, im0):
598
+ # applies a second stage classifier to yolo outputs
599
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
600
+ for i, d in enumerate(x): # per image
601
+ if d is not None and len(d):
602
+ d = d.clone()
603
+
604
+ # Reshape and pad cutouts
605
+ b = xyxy2xywh(d[:, :4]) # boxes
606
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
607
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
608
+ d[:, :4] = xywh2xyxy(b).long()
609
+
610
+ # Rescale boxes from img_size to im0 size
611
+ scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
612
+
613
+ # Classes
614
+ pred_cls1 = d[:, 5].long()
615
+ ims = []
616
+ for j, a in enumerate(d): # per item
617
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
618
+ im = cv2.resize(cutout, (224, 224)) # BGR
619
+ # cv2.imwrite('test%i.jpg' % j, cutout)
620
+
621
+ # BGR to RGB, to 3x416x416
622
+ im = im[:, :, ::-1].transpose(2, 0, 1)
623
+ im = np.ascontiguousarray(
624
+ im, dtype=np.float32) # uint8 to float32
625
+ im /= 255.0 # 0 - 255 to 0.0 - 1.0
626
+ ims.append(im)
627
+
628
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)
629
+ ).argmax(1) # classifier prediction
630
+ # retain matching class detections
631
+ x[i] = x[i][pred_cls1 == pred_cls2]
632
+
633
+ return x
634
+
635
+
636
+ def increment_path(path, exist_ok=True, sep=''):
637
+ # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
638
+ path = Path(path) # os-agnostic
639
+ if (path.exists() and exist_ok) or (not path.exists()):
640
+ return str(path)
641
+ else:
642
+ dirs = glob.glob(f"{path}{sep}*") # similar paths
643
+ matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
644
+ i = [int(m.groups()[0]) for m in matches if m] # indices
645
+ n = max(i) + 1 if i else 2 # increment number
646
+ return f"{path}{sep}{n}" # update path
utils/google_app_engine/Dockerfile ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM gcr.io/google-appengine/python
2
+
3
+ # Create a virtualenv for dependencies. This isolates these packages from
4
+ # system-level packages.
5
+ # Use -p python3 or -p python3.7 to select python version. Default is version 2.
6
+ RUN virtualenv /env -p python3
7
+
8
+ # Setting these environment variables are the same as running
9
+ # source /env/bin/activate.
10
+ ENV VIRTUAL_ENV /env
11
+ ENV PATH /env/bin:$PATH
12
+
13
+ RUN apt-get update && apt-get install -y python-opencv
14
+
15
+ # Copy the application's requirements.txt and run pip to install all
16
+ # dependencies into the virtualenv.
17
+ ADD requirements.txt /app/requirements.txt
18
+ RUN pip install -r /app/requirements.txt
19
+
20
+ # Add the application source code.
21
+ ADD . /app
22
+
23
+ # Run a WSGI server to serve the application. gunicorn must be declared as
24
+ # a dependency in requirements.txt.
25
+ CMD gunicorn -b :$PORT main:app
utils/google_app_engine/additional_requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # add these requirements in your app on top of the existing ones
2
+ pip==18.1
3
+ Flask==1.0.2
4
+ gunicorn==19.9.0
utils/google_app_engine/app.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: custom
2
+ env: flex
3
+
4
+ service: yolov5app
5
+
6
+ liveness_check:
7
+ initial_delay_sec: 600
8
+
9
+ manual_scaling:
10
+ instances: 1
11
+ resources:
12
+ cpu: 1
13
+ memory_gb: 4
14
+ disk_size_gb: 20
utils/google_utils.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2
+
3
+ import os
4
+ import platform
5
+ import subprocess
6
+ import time
7
+ from pathlib import Path
8
+
9
+ import requests
10
+ import torch
11
+
12
+
13
+ def gsutil_getsize(url=''):
14
+ # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15
+ s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16
+ return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17
+
18
+
19
+ def attempt_download(file, repo='ultralytics/yolov5'):
20
+ # Attempt file download if does not exist
21
+ file = Path(str(file).strip().replace("'", '').lower())
22
+
23
+ if not file.exists():
24
+ try:
25
+ response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26
+ assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
27
+ tag = response['tag_name'] # i.e. 'v1.0'
28
+ except: # fallback plan
29
+ assets = ['yolov5.pt', 'yolov5.pt', 'yolov5l.pt', 'yolov5x.pt']
30
+ tag = subprocess.check_output('git tag', shell=True).decode('utf-8').split('\n')[-2]
31
+
32
+ name = file.name
33
+ if name in assets:
34
+ msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
35
+ redundant = False # second download option
36
+ try: # GitHub
37
+ url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
38
+ print(f'Downloading {url} to {file}...')
39
+ torch.hub.download_url_to_file(url, file)
40
+ assert file.exists() and file.stat().st_size > 1E6 # check
41
+ except Exception as e: # GCP
42
+ print(f'Download error: {e}')
43
+ assert redundant, 'No secondary mirror'
44
+ url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
45
+ print(f'Downloading {url} to {file}...')
46
+ os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
47
+ finally:
48
+ if not file.exists() or file.stat().st_size < 1E6: # check
49
+ file.unlink(missing_ok=True) # remove partial downloads
50
+ print(f'ERROR: Download failure: {msg}')
51
+ print('')
52
+ return
53
+
54
+
55
+ def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
56
+ # Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
57
+ t = time.time()
58
+ file = Path(file)
59
+ cookie = Path('cookie') # gdrive cookie
60
+ print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
61
+ file.unlink(missing_ok=True) # remove existing file
62
+ cookie.unlink(missing_ok=True) # remove existing cookie
63
+
64
+ # Attempt file download
65
+ out = "NUL" if platform.system() == "Windows" else "/dev/null"
66
+ os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
67
+ if os.path.exists('cookie'): # large file
68
+ s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
69
+ else: # small file
70
+ s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
71
+ r = os.system(s) # execute, capture return
72
+ cookie.unlink(missing_ok=True) # remove existing cookie
73
+
74
+ # Error check
75
+ if r != 0:
76
+ file.unlink(missing_ok=True) # remove partial
77
+ print('Download error ') # raise Exception('Download error')
78
+ return r
79
+
80
+ # Unzip if archive
81
+ if file.suffix == '.zip':
82
+ print('unzipping... ', end='')
83
+ os.system(f'unzip -q {file}') # unzip
84
+ file.unlink() # remove zip to free space
85
+
86
+ print(f'Done ({time.time() - t:.1f}s)')
87
+ return r
88
+
89
+
90
+ def get_token(cookie="./cookie"):
91
+ with open(cookie) as f:
92
+ for line in f:
93
+ if "download" in line:
94
+ return line.split()[-1]
95
+ return ""
96
+
97
+ # def upload_blob(bucket_name, source_file_name, destination_blob_name):
98
+ # # Uploads a file to a bucket
99
+ # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
100
+ #
101
+ # storage_client = storage.Client()
102
+ # bucket = storage_client.get_bucket(bucket_name)
103
+ # blob = bucket.blob(destination_blob_name)
104
+ #
105
+ # blob.upload_from_filename(source_file_name)
106
+ #
107
+ # print('File {} uploaded to {}.'.format(
108
+ # source_file_name,
109
+ # destination_blob_name))
110
+ #
111
+ #
112
+ # def download_blob(bucket_name, source_blob_name, destination_file_name):
113
+ # # Uploads a blob from a bucket
114
+ # storage_client = storage.Client()
115
+ # bucket = storage_client.get_bucket(bucket_name)
116
+ # blob = bucket.blob(source_blob_name)
117
+ #
118
+ # blob.download_to_filename(destination_file_name)
119
+ #
120
+ # print('Blob {} downloaded to {}.'.format(
121
+ # source_blob_name,
122
+ # destination_file_name))
utils/infer_utils.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+
5
+ def decode_infer(output, stride):
6
+ # logging.info(torch.tensor(output.shape[0]))
7
+ # logging.info(output.shape)
8
+ # # bz is batch-size
9
+ # bz = tuple(torch.tensor(output.shape[0]))
10
+ # gridsize = tuple(torch.tensor(output.shape[-1]))
11
+ # logging.info(gridsize)
12
+ sh = torch.tensor(output.shape)
13
+ bz = sh[0]
14
+ gridsize = sh[-1]
15
+
16
+ output = output.permute(0, 2, 3, 1)
17
+ output = output.view(bz, gridsize, gridsize, self.gt_per_grid, 5+self.numclass)
18
+ x1y1, x2y2, conf, prob = torch.split(
19
+ output, [2, 2, 1, self.numclass], dim=4)
20
+
21
+ shiftx = torch.arange(0, gridsize, dtype=torch.float32)
22
+ shifty = torch.arange(0, gridsize, dtype=torch.float32)
23
+ shifty, shiftx = torch.meshgrid([shiftx, shifty])
24
+ shiftx = shiftx.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
25
+ shifty = shifty.unsqueeze(-1).repeat(bz, 1, 1, self.gt_per_grid)
26
+
27
+ xy_grid = torch.stack([shiftx, shifty], dim=4).cuda()
28
+ x1y1 = (xy_grid+0.5-torch.exp(x1y1))*stride
29
+ x2y2 = (xy_grid+0.5+torch.exp(x2y2))*stride
30
+
31
+ xyxy = torch.cat((x1y1, x2y2), dim=4)
32
+ conf = torch.sigmoid(conf)
33
+ prob = torch.sigmoid(prob)
34
+ output = torch.cat((xyxy, conf, prob), 4)
35
+ output = output.view(bz, -1, 5+self.numclass)
36
+ return output
utils/loss.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Loss functions
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from utils.general import bbox_iou
7
+ from utils.torch_utils import is_parallel
8
+
9
+
10
+ def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
11
+ # return positive, negative label smoothing BCE targets
12
+ return 1.0 - 0.5 * eps, 0.5 * eps
13
+
14
+
15
+ class BCEBlurWithLogitsLoss(nn.Module):
16
+ # BCEwithLogitLoss() with reduced missing label effects.
17
+ def __init__(self, alpha=0.05):
18
+ super(BCEBlurWithLogitsLoss, self).__init__()
19
+ self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
20
+ self.alpha = alpha
21
+
22
+ def forward(self, pred, true):
23
+ loss = self.loss_fcn(pred, true)
24
+ pred = torch.sigmoid(pred) # prob from logits
25
+ dx = pred - true # reduce only missing label effects
26
+ # dx = (pred - true).abs() # reduce missing label and false label effects
27
+ alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
28
+ loss *= alpha_factor
29
+ return loss.mean()
30
+
31
+
32
+ class FocalLoss(nn.Module):
33
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
34
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
35
+ super(FocalLoss, self).__init__()
36
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
37
+ self.gamma = gamma
38
+ self.alpha = alpha
39
+ self.reduction = loss_fcn.reduction
40
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
41
+
42
+ def forward(self, pred, true):
43
+ loss = self.loss_fcn(pred, true)
44
+ # p_t = torch.exp(-loss)
45
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
46
+
47
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
48
+ pred_prob = torch.sigmoid(pred) # prob from logits
49
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
50
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
51
+ modulating_factor = (1.0 - p_t) ** self.gamma
52
+ loss *= alpha_factor * modulating_factor
53
+
54
+ if self.reduction == 'mean':
55
+ return loss.mean()
56
+ elif self.reduction == 'sum':
57
+ return loss.sum()
58
+ else: # 'none'
59
+ return loss
60
+
61
+
62
+ class QFocalLoss(nn.Module):
63
+ # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
64
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
65
+ super(QFocalLoss, self).__init__()
66
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
67
+ self.gamma = gamma
68
+ self.alpha = alpha
69
+ self.reduction = loss_fcn.reduction
70
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
71
+
72
+ def forward(self, pred, true):
73
+ loss = self.loss_fcn(pred, true)
74
+
75
+ pred_prob = torch.sigmoid(pred) # prob from logits
76
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
77
+ modulating_factor = torch.abs(true - pred_prob) ** self.gamma
78
+ loss *= alpha_factor * modulating_factor
79
+
80
+ if self.reduction == 'mean':
81
+ return loss.mean()
82
+ elif self.reduction == 'sum':
83
+ return loss.sum()
84
+ else: # 'none'
85
+ return loss
86
+
87
+ class WingLoss(nn.Module):
88
+ def __init__(self, w=10, e=2):
89
+ super(WingLoss, self).__init__()
90
+ # https://arxiv.org/pdf/1711.06753v4.pdf Figure 5
91
+ self.w = w
92
+ self.e = e
93
+ self.C = self.w - self.w * np.log(1 + self.w / self.e)
94
+
95
+ def forward(self, x, t, sigma=1):
96
+ weight = torch.ones_like(t)
97
+ weight[torch.where(t==-1)] = 0
98
+ diff = weight * (x - t)
99
+ abs_diff = diff.abs()
100
+ flag = (abs_diff.data < self.w).float()
101
+ y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C)
102
+ return y.sum()
103
+
104
+ class LandmarksLoss(nn.Module):
105
+ # BCEwithLogitLoss() with reduced missing label effects.
106
+ def __init__(self, alpha=1.0):
107
+ super(LandmarksLoss, self).__init__()
108
+ self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum')
109
+ self.alpha = alpha
110
+
111
+ def forward(self, pred, truel, mask):
112
+ loss = self.loss_fcn(pred*mask, truel*mask)
113
+ return loss / (torch.sum(mask) + 10e-14)
114
+
115
+
116
+ def compute_loss(p, targets, model): # predictions, targets, model
117
+ device = targets.device
118
+ lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
119
+ tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model) # targets
120
+ h = model.hyp # hyperparameters
121
+
122
+ # Define criteria
123
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) # weight=model.class_weights)
124
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
125
+
126
+ landmarks_loss = LandmarksLoss(1.0)
127
+
128
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
129
+ cp, cn = smooth_BCE(eps=0.0)
130
+
131
+ # Focal loss
132
+ g = h['fl_gamma'] # focal loss gamma
133
+ if g > 0:
134
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
135
+
136
+ # Losses
137
+ nt = 0 # number of targets
138
+ no = len(p) # number of outputs
139
+ balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
140
+ for i, pi in enumerate(p): # layer index, layer predictions
141
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
142
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
143
+
144
+ n = b.shape[0] # number of targets
145
+ if n:
146
+ nt += n # cumulative targets
147
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
148
+
149
+ # Regression
150
+ pxy = ps[:, :2].sigmoid() * 2. - 0.5
151
+ pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
152
+ pbox = torch.cat((pxy, pwh), 1) # predicted box
153
+ iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
154
+ lbox += (1.0 - iou).mean() # iou loss
155
+
156
+ # Objectness
157
+ tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
158
+
159
+ # Classification
160
+ if model.nc > 1: # cls loss (only if multiple classes)
161
+ t = torch.full_like(ps[:, 15:], cn, device=device) # targets
162
+ t[range(n), tcls[i]] = cp
163
+ lcls += BCEcls(ps[:, 15:], t) # BCE
164
+
165
+ # Append targets to text file
166
+ # with open('targets.txt', 'a') as file:
167
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
168
+
169
+ #landmarks loss
170
+ #plandmarks = ps[:,5:15].sigmoid() * 8. - 4.
171
+ plandmarks = ps[:,5:15]
172
+
173
+ plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i]
174
+ plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i]
175
+ plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i]
176
+ plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i]
177
+ plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i]
178
+
179
+ lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i])
180
+
181
+
182
+ lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
183
+
184
+ s = 3 / no # output count scaling
185
+ lbox *= h['box'] * s
186
+ lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
187
+ lcls *= h['cls'] * s
188
+ lmark *= h['landmark'] * s
189
+
190
+ bs = tobj.shape[0] # batch size
191
+
192
+ loss = lbox + lobj + lcls + lmark
193
+ return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach()
194
+
195
+
196
+ def build_targets(p, targets, model):
197
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
198
+ det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
199
+ na, nt = det.na, targets.shape[0] # number of anchors, targets
200
+ tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], []
201
+ #gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
202
+ gain = torch.ones(17, device=targets.device)
203
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
204
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
205
+
206
+ g = 0.5 # bias
207
+ off = torch.tensor([[0, 0],
208
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
209
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
210
+ ], device=targets.device).float() * g # offsets
211
+
212
+ for i in range(det.nl):
213
+ anchors = det.anchors[i]
214
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
215
+ #landmarks 10
216
+ gain[6:16] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2, 3, 2]] # xyxy gain
217
+
218
+ # Match targets to anchors
219
+ t = targets * gain
220
+ if nt:
221
+ # Matches
222
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
223
+ j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
224
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
225
+ t = t[j] # filter
226
+
227
+ # Offsets
228
+ gxy = t[:, 2:4] # grid xy
229
+ gxi = gain[[2, 3]] - gxy # inverse
230
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
231
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
232
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
233
+ t = t.repeat((5, 1, 1))[j]
234
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
235
+ else:
236
+ t = targets[0]
237
+ offsets = 0
238
+
239
+ # Define
240
+ b, c = t[:, :2].long().T # image, class
241
+ gxy = t[:, 2:4] # grid xy
242
+ gwh = t[:, 4:6] # grid wh
243
+ gij = (gxy - offsets).long()
244
+ gi, gj = gij.T # grid xy indices
245
+
246
+ # Append
247
+ a = t[:, 16].long() # anchor indices
248
+ indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
249
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
250
+ anch.append(anchors[a]) # anchors
251
+ tcls.append(c) # class
252
+
253
+ #landmarks
254
+ lks = t[:,6:16]
255
+ #lks_mask = lks > 0
256
+ #lks_mask = lks_mask.float()
257
+ lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
258
+
259
+ #应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准
260
+
261
+ lks[:, [0, 1]] = (lks[:, [0, 1]] - gij)
262
+ lks[:, [2, 3]] = (lks[:, [2, 3]] - gij)
263
+ lks[:, [4, 5]] = (lks[:, [4, 5]] - gij)
264
+ lks[:, [6, 7]] = (lks[:, [6, 7]] - gij)
265
+ lks[:, [8, 9]] = (lks[:, [8, 9]] - gij)
266
+
267
+ '''
268
+ #anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0])
269
+ #anch_wh = torch.ones(5, device=targets.device)
270
+ anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5)
271
+ anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5)
272
+ anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5)
273
+ lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]])
274
+ lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]])
275
+ lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]])
276
+
277
+ lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]])
278
+ lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]])
279
+ lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]])
280
+
281
+ #new_lks = lks[lks_mask>0]
282
+ #print('new_lks: min --- ', torch.min(new_lks), ' max --- ', torch.max(new_lks))
283
+
284
+ lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
285
+ lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
286
+
287
+ lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2
288
+ lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
289
+ lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
290
+ lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
291
+ lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
292
+ lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
293
+ lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
294
+ lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
295
+ lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
296
+ lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
297
+ lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
298
+ '''
299
+ lks_mask_new = lks_mask
300
+ lmks_mask.append(lks_mask_new)
301
+ landmarks.append(lks)
302
+ #print('lks: ', lks.size())
303
+
304
+ return tcls, tbox, indices, anch, landmarks, lmks_mask
utils/metrics.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model validation metrics
2
+
3
+ from pathlib import Path
4
+
5
+ import matplotlib.pyplot as plt
6
+ import numpy as np
7
+ import torch
8
+
9
+ from . import general
10
+
11
+
12
+ def fitness(x):
13
+ # Model fitness as a weighted combination of metrics
14
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95]
15
+ return (x[:, :4] * w).sum(1)
16
+
17
+
18
+ def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='precision-recall_curve.png', names=[]):
19
+ """ Compute the average precision, given the recall and precision curves.
20
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21
+ # Arguments
22
+ tp: True positives (nparray, nx1 or nx10).
23
+ conf: Objectness value from 0-1 (nparray).
24
+ pred_cls: Predicted object classes (nparray).
25
+ target_cls: True object classes (nparray).
26
+ plot: Plot precision-recall curve at [email protected]
27
+ save_dir: Plot save directory
28
+ # Returns
29
+ The average precision as computed in py-faster-rcnn.
30
+ """
31
+
32
+ # Sort by objectness
33
+ i = np.argsort(-conf)
34
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
35
+
36
+ # Find unique classes
37
+ unique_classes = np.unique(target_cls)
38
+
39
+ # Create Precision-Recall curve and compute AP for each class
40
+ px, py = np.linspace(0, 1, 1000), [] # for plotting
41
+ pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
42
+ s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
43
+ ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
44
+ for ci, c in enumerate(unique_classes):
45
+ i = pred_cls == c
46
+ n_l = (target_cls == c).sum() # number of labels
47
+ n_p = i.sum() # number of predictions
48
+
49
+ if n_p == 0 or n_l == 0:
50
+ continue
51
+ else:
52
+ # Accumulate FPs and TPs
53
+ fpc = (1 - tp[i]).cumsum(0)
54
+ tpc = tp[i].cumsum(0)
55
+
56
+ # Recall
57
+ recall = tpc / (n_l + 1e-16) # recall curve
58
+ r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
59
+
60
+ # Precision
61
+ precision = tpc / (tpc + fpc) # precision curve
62
+ p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
63
+
64
+ # AP from recall-precision curve
65
+ for j in range(tp.shape[1]):
66
+ ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
67
+ if plot and (j == 0):
68
+ py.append(np.interp(px, mrec, mpre)) # precision at [email protected]
69
+
70
+ # Compute F1 score (harmonic mean of precision and recall)
71
+ f1 = 2 * p * r / (p + r + 1e-16)
72
+
73
+ if plot:
74
+ plot_pr_curve(px, py, ap, save_dir, names)
75
+
76
+ return p, r, ap, f1, unique_classes.astype('int32')
77
+
78
+
79
+ def compute_ap(recall, precision):
80
+ """ Compute the average precision, given the recall and precision curves
81
+ # Arguments
82
+ recall: The recall curve (list)
83
+ precision: The precision curve (list)
84
+ # Returns
85
+ Average precision, precision curve, recall curve
86
+ """
87
+
88
+ # Append sentinel values to beginning and end
89
+ mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
90
+ mpre = np.concatenate(([1.], precision, [0.]))
91
+
92
+ # Compute the precision envelope
93
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
94
+
95
+ # Integrate area under curve
96
+ method = 'interp' # methods: 'continuous', 'interp'
97
+ if method == 'interp':
98
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
99
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
100
+ else: # 'continuous'
101
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
102
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
103
+
104
+ return ap, mpre, mrec
105
+
106
+
107
+ class ConfusionMatrix:
108
+ # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
109
+ def __init__(self, nc, conf=0.25, iou_thres=0.45):
110
+ self.matrix = np.zeros((nc + 1, nc + 1))
111
+ self.nc = nc # number of classes
112
+ self.conf = conf
113
+ self.iou_thres = iou_thres
114
+
115
+ def process_batch(self, detections, labels):
116
+ """
117
+ Return intersection-over-union (Jaccard index) of boxes.
118
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
119
+ Arguments:
120
+ detections (Array[N, 6]), x1, y1, x2, y2, conf, class
121
+ labels (Array[M, 5]), class, x1, y1, x2, y2
122
+ Returns:
123
+ None, updates confusion matrix accordingly
124
+ """
125
+ detections = detections[detections[:, 4] > self.conf]
126
+ gt_classes = labels[:, 0].int()
127
+ detection_classes = detections[:, 5].int()
128
+ iou = general.box_iou(labels[:, 1:], detections[:, :4])
129
+
130
+ x = torch.where(iou > self.iou_thres)
131
+ if x[0].shape[0]:
132
+ matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
133
+ if x[0].shape[0] > 1:
134
+ matches = matches[matches[:, 2].argsort()[::-1]]
135
+ matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
136
+ matches = matches[matches[:, 2].argsort()[::-1]]
137
+ matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
138
+ else:
139
+ matches = np.zeros((0, 3))
140
+
141
+ n = matches.shape[0] > 0
142
+ m0, m1, _ = matches.transpose().astype(np.int16)
143
+ for i, gc in enumerate(gt_classes):
144
+ j = m0 == i
145
+ if n and sum(j) == 1:
146
+ self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
147
+ else:
148
+ self.matrix[gc, self.nc] += 1 # background FP
149
+
150
+ if n:
151
+ for i, dc in enumerate(detection_classes):
152
+ if not any(m1 == i):
153
+ self.matrix[self.nc, dc] += 1 # background FN
154
+
155
+ def matrix(self):
156
+ return self.matrix
157
+
158
+ def plot(self, save_dir='', names=()):
159
+ try:
160
+ import seaborn as sn
161
+
162
+ array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
163
+ array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
164
+
165
+ fig = plt.figure(figsize=(12, 9), tight_layout=True)
166
+ sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
167
+ labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
168
+ sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
169
+ xticklabels=names + ['background FN'] if labels else "auto",
170
+ yticklabels=names + ['background FP'] if labels else "auto").set_facecolor((1, 1, 1))
171
+ fig.axes[0].set_xlabel('True')
172
+ fig.axes[0].set_ylabel('Predicted')
173
+ fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
174
+ except Exception as e:
175
+ pass
176
+
177
+ def print(self):
178
+ for i in range(self.nc + 1):
179
+ print(' '.join(map(str, self.matrix[i])))
180
+
181
+
182
+ # Plots ----------------------------------------------------------------------------------------------------------------
183
+
184
+ def plot_pr_curve(px, py, ap, save_dir='.', names=()):
185
+ fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
186
+ py = np.stack(py, axis=1)
187
+
188
+ if 0 < len(names) < 21: # show mAP in legend if < 10 classes
189
+ for i, y in enumerate(py.T):
190
+ ax.plot(px, y, linewidth=1, label=f'{names[i]} %.3f' % ap[i, 0]) # plot(recall, precision)
191
+ else:
192
+ ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
193
+
194
+ ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
195
+ ax.set_xlabel('Recall')
196
+ ax.set_ylabel('Precision')
197
+ ax.set_xlim(0, 1)
198
+ ax.set_ylim(0, 1)
199
+ plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
200
+ fig.savefig(Path(save_dir) / 'precision_recall_curve.png', dpi=250)
utils/plots.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Plotting utils
2
+
3
+ import glob
4
+ import math
5
+ import os
6
+ import random
7
+ from copy import copy
8
+ from pathlib import Path
9
+
10
+ import cv2
11
+ import matplotlib
12
+ import matplotlib.pyplot as plt
13
+ import numpy as np
14
+ import pandas as pd
15
+ import seaborn as sns
16
+ import torch
17
+ import yaml
18
+ from PIL import Image, ImageDraw
19
+ from scipy.signal import butter, filtfilt
20
+
21
+ from utils.general import xywh2xyxy, xyxy2xywh
22
+ from utils.metrics import fitness
23
+
24
+ # Settings
25
+ matplotlib.rc('font', **{'size': 11})
26
+ matplotlib.use('Agg') # for writing to files only
27
+
28
+
29
+ def color_list():
30
+ # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31
+ def hex2rgb(h):
32
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33
+
34
+ return [hex2rgb(h) for h in plt.rcParams['axes.prop_cycle'].by_key()['color']]
35
+
36
+
37
+ def hist2d(x, y, n=100):
38
+ # 2d histogram used in labels.png and evolve.png
39
+ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40
+ hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41
+ xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42
+ yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43
+ return np.log(hist[xidx, yidx])
44
+
45
+
46
+ def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47
+ # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48
+ def butter_lowpass(cutoff, fs, order):
49
+ nyq = 0.5 * fs
50
+ normal_cutoff = cutoff / nyq
51
+ return butter(order, normal_cutoff, btype='low', analog=False)
52
+
53
+ b, a = butter_lowpass(cutoff, fs, order=order)
54
+ return filtfilt(b, a, data) # forward-backward filter
55
+
56
+
57
+ def plot_one_box(x, img, color=None, label=None, line_thickness=None):
58
+ # Plots one bounding box on image img
59
+ tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60
+ color = color or [random.randint(0, 255) for _ in range(3)]
61
+ c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62
+ cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63
+ if label:
64
+ tf = max(tl - 1, 1) # font thickness
65
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66
+ c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67
+ cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68
+ cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69
+
70
+
71
+ def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
72
+ # Compares the two methods for width-height anchor multiplication
73
+ # https://github.com/ultralytics/yolov3/issues/168
74
+ x = np.arange(-4.0, 4.0, .1)
75
+ ya = np.exp(x)
76
+ yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
77
+
78
+ fig = plt.figure(figsize=(6, 3), tight_layout=True)
79
+ plt.plot(x, ya, '.-', label='YOLOv3')
80
+ plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
81
+ plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
82
+ plt.xlim(left=-4, right=4)
83
+ plt.ylim(bottom=0, top=6)
84
+ plt.xlabel('input')
85
+ plt.ylabel('output')
86
+ plt.grid()
87
+ plt.legend()
88
+ fig.savefig('comparison.png', dpi=200)
89
+
90
+
91
+ def output_to_target(output):
92
+ # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
93
+ targets = []
94
+ for i, o in enumerate(output):
95
+ for *box, conf, cls in o.cpu().numpy():
96
+ targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
97
+ return np.array(targets)
98
+
99
+
100
+ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
101
+ # Plot image grid with labels
102
+
103
+ if isinstance(images, torch.Tensor):
104
+ images = images.cpu().float().numpy()
105
+ if isinstance(targets, torch.Tensor):
106
+ targets = targets.cpu().numpy()
107
+
108
+ # un-normalise
109
+ if np.max(images[0]) <= 1:
110
+ images *= 255
111
+
112
+ tl = 3 # line thickness
113
+ tf = max(tl - 1, 1) # font thickness
114
+ bs, _, h, w = images.shape # batch size, _, height, width
115
+ bs = min(bs, max_subplots) # limit plot images
116
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
117
+
118
+ # Check if we should resize
119
+ scale_factor = max_size / max(h, w)
120
+ if scale_factor < 1:
121
+ h = math.ceil(scale_factor * h)
122
+ w = math.ceil(scale_factor * w)
123
+
124
+ # colors = color_list() # list of colors
125
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
126
+ for i, img in enumerate(images):
127
+ if i == max_subplots: # if last batch has fewer images than we expect
128
+ break
129
+
130
+ block_x = int(w * (i // ns))
131
+ block_y = int(h * (i % ns))
132
+
133
+ img = img.transpose(1, 2, 0)
134
+ if scale_factor < 1:
135
+ img = cv2.resize(img, (w, h))
136
+
137
+ mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
138
+ if len(targets) > 0:
139
+ image_targets = targets[targets[:, 0] == i]
140
+ boxes = xywh2xyxy(image_targets[:, 2:6]).T
141
+ classes = image_targets[:, 1].astype('int')
142
+ labels = image_targets.shape[1] == 6 # labels if no conf column
143
+ conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
144
+
145
+ if boxes.shape[1]:
146
+ if boxes.max() <= 1.01: # if normalized with tolerance 0.01
147
+ boxes[[0, 2]] *= w # scale to pixels
148
+ boxes[[1, 3]] *= h
149
+ elif scale_factor < 1: # absolute coords need scale if image scales
150
+ boxes *= scale_factor
151
+ boxes[[0, 2]] += block_x
152
+ boxes[[1, 3]] += block_y
153
+ for j, box in enumerate(boxes.T):
154
+ cls = int(classes[j])
155
+ # color = colors[cls % len(colors)]
156
+ cls = names[cls] if names else cls
157
+ if labels or conf[j] > 0.25: # 0.25 conf thresh
158
+ label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
159
+ plot_one_box(box, mosaic, label=label, color=None, line_thickness=tl)
160
+
161
+ # Draw image filename labels
162
+ if paths:
163
+ label = Path(paths[i]).name[:40] # trim to 40 char
164
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
165
+ cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
166
+ lineType=cv2.LINE_AA)
167
+
168
+ # Image border
169
+ cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
170
+
171
+ if fname:
172
+ r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
173
+ mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
174
+ # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
175
+ Image.fromarray(mosaic).save(fname) # PIL save
176
+ return mosaic
177
+
178
+
179
+ def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
180
+ # Plot LR simulating training for full epochs
181
+ optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
182
+ y = []
183
+ for _ in range(epochs):
184
+ scheduler.step()
185
+ y.append(optimizer.param_groups[0]['lr'])
186
+ plt.plot(y, '.-', label='LR')
187
+ plt.xlabel('epoch')
188
+ plt.ylabel('LR')
189
+ plt.grid()
190
+ plt.xlim(0, epochs)
191
+ plt.ylim(0)
192
+ plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
193
+ plt.close()
194
+
195
+
196
+ def plot_test_txt(): # from utils.plots import *; plot_test()
197
+ # Plot test.txt histograms
198
+ x = np.loadtxt('test.txt', dtype=np.float32)
199
+ box = xyxy2xywh(x[:, :4])
200
+ cx, cy = box[:, 0], box[:, 1]
201
+
202
+ fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
203
+ ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
204
+ ax.set_aspect('equal')
205
+ plt.savefig('hist2d.png', dpi=300)
206
+
207
+ fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
208
+ ax[0].hist(cx, bins=600)
209
+ ax[1].hist(cy, bins=600)
210
+ plt.savefig('hist1d.png', dpi=200)
211
+
212
+
213
+ def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
214
+ # Plot targets.txt histograms
215
+ x = np.loadtxt('targets.txt', dtype=np.float32).T
216
+ s = ['x targets', 'y targets', 'width targets', 'height targets']
217
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
218
+ ax = ax.ravel()
219
+ for i in range(4):
220
+ ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
221
+ ax[i].legend()
222
+ ax[i].set_title(s[i])
223
+ plt.savefig('targets.jpg', dpi=200)
224
+
225
+
226
+ def plot_study_txt(path='study/', x=None): # from utils.plots import *; plot_study_txt()
227
+ # Plot study.txt generated by test.py
228
+ fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
229
+ ax = ax.ravel()
230
+
231
+ fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
232
+ for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
233
+ y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
234
+ x = np.arange(y.shape[1]) if x is None else np.array(x)
235
+ s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
236
+ for i in range(7):
237
+ ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
238
+ ax[i].set_title(s[i])
239
+
240
+ j = y[3].argmax() + 1
241
+ ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
242
+ label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
243
+
244
+ ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
245
+ 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
246
+
247
+ ax2.grid()
248
+ ax2.set_yticks(np.arange(30, 60, 5))
249
+ ax2.set_xlim(0, 30)
250
+ ax2.set_ylim(29, 51)
251
+ ax2.set_xlabel('GPU Speed (ms/img)')
252
+ ax2.set_ylabel('COCO AP val')
253
+ ax2.legend(loc='lower right')
254
+ plt.savefig('test_study.png', dpi=300)
255
+
256
+
257
+ def plot_labels(labels, save_dir=Path(''), loggers=None):
258
+ # plot dataset labels
259
+ print('Plotting labels... ')
260
+ c, b = labels[:, 0], labels[:, 1:5].transpose() # classes, boxes
261
+ nc = int(c.max() + 1) # number of classes
262
+ colors = color_list()
263
+ x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
264
+
265
+ # seaborn correlogram
266
+ sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
267
+ plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
268
+ plt.close()
269
+
270
+ # matplotlib labels
271
+ matplotlib.use('svg') # faster
272
+ ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
273
+ ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
274
+ ax[0].set_xlabel('classes')
275
+ sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
276
+ sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
277
+
278
+ # rectangles
279
+ labels[:, 1:3] = 0.5 # center
280
+ labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
281
+ img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
282
+ # for cls, *box in labels[:1000]:
283
+ # ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
284
+ ax[1].imshow(img)
285
+ ax[1].axis('off')
286
+
287
+ for a in [0, 1, 2, 3]:
288
+ for s in ['top', 'right', 'left', 'bottom']:
289
+ ax[a].spines[s].set_visible(False)
290
+
291
+ plt.savefig(save_dir / 'labels.jpg', dpi=200)
292
+ matplotlib.use('Agg')
293
+ plt.close()
294
+
295
+ # loggers
296
+ for k, v in loggers.items() or {}:
297
+ if k == 'wandb' and v:
298
+ v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]})
299
+
300
+
301
+ def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
302
+ # Plot hyperparameter evolution results in evolve.txt
303
+ with open(yaml_file) as f:
304
+ hyp = yaml.load(f, Loader=yaml.SafeLoader)
305
+ x = np.loadtxt('evolve.txt', ndmin=2)
306
+ f = fitness(x)
307
+ # weights = (f - f.min()) ** 2 # for weighted results
308
+ plt.figure(figsize=(10, 12), tight_layout=True)
309
+ matplotlib.rc('font', **{'size': 8})
310
+ for i, (k, v) in enumerate(hyp.items()):
311
+ y = x[:, i + 7]
312
+ # mu = (y * weights).sum() / weights.sum() # best weighted result
313
+ mu = y[f.argmax()] # best single result
314
+ plt.subplot(6, 5, i + 1)
315
+ plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
316
+ plt.plot(mu, f.max(), 'k+', markersize=15)
317
+ plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
318
+ if i % 5 != 0:
319
+ plt.yticks([])
320
+ print('%15s: %.3g' % (k, mu))
321
+ plt.savefig('evolve.png', dpi=200)
322
+ print('\nPlot saved as evolve.png')
323
+
324
+
325
+ def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
326
+ # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
327
+ ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
328
+ s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
329
+ files = list(Path(save_dir).glob('frames*.txt'))
330
+ for fi, f in enumerate(files):
331
+ try:
332
+ results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
333
+ n = results.shape[1] # number of rows
334
+ x = np.arange(start, min(stop, n) if stop else n)
335
+ results = results[:, x]
336
+ t = (results[0] - results[0].min()) # set t0=0s
337
+ results[0] = x
338
+ for i, a in enumerate(ax):
339
+ if i < len(results):
340
+ label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
341
+ a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
342
+ a.set_title(s[i])
343
+ a.set_xlabel('time (s)')
344
+ # if fi == len(files) - 1:
345
+ # a.set_ylim(bottom=0)
346
+ for side in ['top', 'right']:
347
+ a.spines[side].set_visible(False)
348
+ else:
349
+ a.remove()
350
+ except Exception as e:
351
+ print('Warning: Plotting error for %s; %s' % (f, e))
352
+
353
+ ax[1].legend()
354
+ plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
355
+
356
+
357
+ def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
358
+ # Plot training 'results*.txt', overlaying train and val losses
359
+ s = ['train', 'train', 'train', 'Precision', '[email protected]', 'val', 'val', 'val', 'Recall', '[email protected]:0.95'] # legends
360
+ t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
361
+ for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
362
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
363
+ n = results.shape[1] # number of rows
364
+ x = range(start, min(stop, n) if stop else n)
365
+ fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
366
+ ax = ax.ravel()
367
+ for i in range(5):
368
+ for j in [i, i + 5]:
369
+ y = results[j, x]
370
+ ax[i].plot(x, y, marker='.', label=s[j])
371
+ # y_smooth = butter_lowpass_filtfilt(y)
372
+ # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
373
+
374
+ ax[i].set_title(t[i])
375
+ ax[i].legend()
376
+ ax[i].set_ylabel(f) if i == 0 else None # add filename
377
+ fig.savefig(f.replace('.txt', '.png'), dpi=200)
378
+
379
+
380
+ def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
381
+ # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
382
+ fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
383
+ ax = ax.ravel()
384
+ s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
385
+ 'val Box', 'val Objectness', 'val Classification', '[email protected]', '[email protected]:0.95']
386
+ if bucket:
387
+ # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
388
+ files = ['results%g.txt' % x for x in id]
389
+ c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
390
+ os.system(c)
391
+ else:
392
+ files = list(Path(save_dir).glob('results*.txt'))
393
+ assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
394
+ for fi, f in enumerate(files):
395
+ try:
396
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
397
+ n = results.shape[1] # number of rows
398
+ x = range(start, min(stop, n) if stop else n)
399
+ for i in range(10):
400
+ y = results[i, x]
401
+ if i in [0, 1, 2, 5, 6, 7]:
402
+ y[y == 0] = np.nan # don't show zero loss values
403
+ # y /= y[0] # normalize
404
+ label = labels[fi] if len(labels) else f.stem
405
+ ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
406
+ ax[i].set_title(s[i])
407
+ # if i in [5, 6, 7]: # share train and val loss y axes
408
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
409
+ except Exception as e:
410
+ print('Warning: Plotting error for %s; %s' % (f, e))
411
+
412
+ ax[1].legend()
413
+ fig.savefig(Path(save_dir) / 'results.png', dpi=200)
utils/torch_utils.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PyTorch utils
2
+
3
+ import logging
4
+ import math
5
+ import os
6
+ import subprocess
7
+ import time
8
+ from contextlib import contextmanager
9
+ from copy import deepcopy
10
+ from pathlib import Path
11
+
12
+ import torch
13
+ import torch.backends.cudnn as cudnn
14
+ import torch.nn as nn
15
+ import torch.nn.functional as F
16
+ import torchvision
17
+
18
+ try:
19
+ import thop # for FLOPS computation
20
+ except ImportError:
21
+ thop = None
22
+ logger = logging.getLogger(__name__)
23
+
24
+
25
+ @contextmanager
26
+ def torch_distributed_zero_first(local_rank: int):
27
+ """
28
+ Decorator to make all processes in distributed training wait for each local_master to do something.
29
+ """
30
+ if local_rank not in [-1, 0]:
31
+ torch.distributed.barrier()
32
+ yield
33
+ if local_rank == 0:
34
+ torch.distributed.barrier()
35
+
36
+
37
+ def init_torch_seeds(seed=0):
38
+ # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
39
+ torch.manual_seed(seed)
40
+ if seed == 0: # slower, more reproducible
41
+ cudnn.benchmark, cudnn.deterministic = False, True
42
+ else: # faster, less reproducible
43
+ cudnn.benchmark, cudnn.deterministic = True, False
44
+
45
+
46
+ def git_describe():
47
+ # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
48
+ if Path('.git').exists():
49
+ return subprocess.check_output('git describe --tags --long --always', shell=True).decode('utf-8')[:-1]
50
+ else:
51
+ return ''
52
+
53
+
54
+ def select_device(device='', batch_size=None):
55
+ # device = 'cpu' or '0' or '0,1,2,3'
56
+ s = f'YOLOv5 {git_describe()} torch {torch.__version__} ' # string
57
+ cpu = device.lower() == 'cpu'
58
+ if cpu:
59
+ os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
60
+ elif device: # non-cpu device requested
61
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
62
+ assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
63
+
64
+ cuda = not cpu and torch.cuda.is_available()
65
+ if cuda:
66
+ n = torch.cuda.device_count()
67
+ if n > 1 and batch_size: # check that batch_size is compatible with device_count
68
+ assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
69
+ space = ' ' * len(s)
70
+ for i, d in enumerate(device.split(',') if device else range(n)):
71
+ p = torch.cuda.get_device_properties(i)
72
+ s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
73
+ else:
74
+ s += 'CPU\n'
75
+
76
+ logger.info(s) # skip a line
77
+ return torch.device('cuda:0' if cuda else 'cpu')
78
+
79
+
80
+ def time_synchronized():
81
+ # pytorch-accurate time
82
+ if torch.cuda.is_available():
83
+ torch.cuda.synchronize()
84
+ return time.time()
85
+
86
+
87
+ def profile(x, ops, n=100, device=None):
88
+ # profile a pytorch module or list of modules. Example usage:
89
+ # x = torch.randn(16, 3, 640, 640) # input
90
+ # m1 = lambda x: x * torch.sigmoid(x)
91
+ # m2 = nn.SiLU()
92
+ # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
93
+
94
+ device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
95
+ x = x.to(device)
96
+ x.requires_grad = True
97
+ print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
98
+ print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
99
+ for m in ops if isinstance(ops, list) else [ops]:
100
+ m = m.to(device) if hasattr(m, 'to') else m # device
101
+ m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
102
+ dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
103
+ try:
104
+ flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
105
+ except:
106
+ flops = 0
107
+
108
+ for _ in range(n):
109
+ t[0] = time_synchronized()
110
+ y = m(x)
111
+ t[1] = time_synchronized()
112
+ try:
113
+ _ = y.sum().backward()
114
+ t[2] = time_synchronized()
115
+ except: # no backward method
116
+ t[2] = float('nan')
117
+ dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
118
+ dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
119
+
120
+ s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
121
+ s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
122
+ p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
123
+ print(f'{p:12.4g}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
124
+
125
+
126
+ def is_parallel(model):
127
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
128
+
129
+
130
+ def intersect_dicts(da, db, exclude=()):
131
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
132
+ return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
133
+
134
+
135
+ def initialize_weights(model):
136
+ for m in model.modules():
137
+ t = type(m)
138
+ if t is nn.Conv2d:
139
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
140
+ elif t is nn.BatchNorm2d:
141
+ m.eps = 1e-3
142
+ m.momentum = 0.03
143
+ elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
144
+ m.inplace = True
145
+
146
+
147
+ def find_modules(model, mclass=nn.Conv2d):
148
+ # Finds layer indices matching module class 'mclass'
149
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
150
+
151
+
152
+ def sparsity(model):
153
+ # Return global model sparsity
154
+ a, b = 0., 0.
155
+ for p in model.parameters():
156
+ a += p.numel()
157
+ b += (p == 0).sum()
158
+ return b / a
159
+
160
+
161
+ def prune(model, amount=0.3):
162
+ # Prune model to requested global sparsity
163
+ import torch.nn.utils.prune as prune
164
+ print('Pruning model... ', end='')
165
+ for name, m in model.named_modules():
166
+ if isinstance(m, nn.Conv2d):
167
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
168
+ prune.remove(m, 'weight') # make permanent
169
+ print(' %.3g global sparsity' % sparsity(model))
170
+
171
+
172
+ def fuse_conv_and_bn(conv, bn):
173
+ # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
174
+ fusedconv = nn.Conv2d(conv.in_channels,
175
+ conv.out_channels,
176
+ kernel_size=conv.kernel_size,
177
+ stride=conv.stride,
178
+ padding=conv.padding,
179
+ groups=conv.groups,
180
+ bias=True).requires_grad_(False).to(conv.weight.device)
181
+
182
+ # prepare filters
183
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
184
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
185
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
186
+
187
+ # prepare spatial bias
188
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
189
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
190
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
191
+
192
+ return fusedconv
193
+
194
+
195
+ def model_info(model, verbose=False, img_size=640):
196
+ # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
197
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
198
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
199
+ if verbose:
200
+ print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
201
+ for i, (name, p) in enumerate(model.named_parameters()):
202
+ name = name.replace('module_list.', '')
203
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
204
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
205
+
206
+ try: # FLOPS
207
+ from thop import profile
208
+ stride = int(model.stride.max()) if hasattr(model, 'stride') else 32
209
+ img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
210
+ flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
211
+ img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
212
+ fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
213
+ except (ImportError, Exception):
214
+ fs = ''
215
+
216
+ logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
217
+
218
+
219
+ def load_classifier(name='resnet101', n=2):
220
+ # Loads a pretrained model reshaped to n-class output
221
+ model = torchvision.models.__dict__[name](pretrained=True)
222
+
223
+ # ResNet model properties
224
+ # input_size = [3, 224, 224]
225
+ # input_space = 'RGB'
226
+ # input_range = [0, 1]
227
+ # mean = [0.485, 0.456, 0.406]
228
+ # std = [0.229, 0.224, 0.225]
229
+
230
+ # Reshape output to n classes
231
+ filters = model.fc.weight.shape[1]
232
+ model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
233
+ model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
234
+ model.fc.out_features = n
235
+ return model
236
+
237
+
238
+ def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
239
+ # scales img(bs,3,y,x) by ratio constrained to gs-multiple
240
+ if ratio == 1.0:
241
+ return img
242
+ else:
243
+ h, w = img.shape[2:]
244
+ s = (int(h * ratio), int(w * ratio)) # new size
245
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
246
+ if not same_shape: # pad/crop img
247
+ h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
248
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
249
+
250
+
251
+ def copy_attr(a, b, include=(), exclude=()):
252
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
253
+ for k, v in b.__dict__.items():
254
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
255
+ continue
256
+ else:
257
+ setattr(a, k, v)
258
+
259
+
260
+ class ModelEMA:
261
+ """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
262
+ Keep a moving average of everything in the model state_dict (parameters and buffers).
263
+ This is intended to allow functionality like
264
+ https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
265
+ A smoothed version of the weights is necessary for some training schemes to perform well.
266
+ This class is sensitive where it is initialized in the sequence of model init,
267
+ GPU assignment and distributed training wrappers.
268
+ """
269
+
270
+ def __init__(self, model, decay=0.9999, updates=0):
271
+ # Create EMA
272
+ self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
273
+ # if next(model.parameters()).device.type != 'cpu':
274
+ # self.ema.half() # FP16 EMA
275
+ self.updates = updates # number of EMA updates
276
+ self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
277
+ for p in self.ema.parameters():
278
+ p.requires_grad_(False)
279
+
280
+ def update(self, model):
281
+ # Update EMA parameters
282
+ with torch.no_grad():
283
+ self.updates += 1
284
+ d = self.decay(self.updates)
285
+
286
+ msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
287
+ for k, v in self.ema.state_dict().items():
288
+ if v.dtype.is_floating_point:
289
+ v *= d
290
+ v += (1. - d) * msd[k].detach()
291
+
292
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
293
+ # Update EMA attributes
294
+ copy_attr(self.ema, model, include, exclude)
utils/wandb_logging/__init__.py ADDED
File without changes
utils/wandb_logging/log_dataset.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ import yaml
4
+
5
+ from wandb_utils import WandbLogger
6
+
7
+ WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
8
+
9
+
10
+ def create_dataset_artifact(opt):
11
+ with open(opt.data) as f:
12
+ data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
13
+ logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
14
+
15
+
16
+ if __name__ == '__main__':
17
+ parser = argparse.ArgumentParser()
18
+ parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
19
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
20
+ parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
21
+ opt = parser.parse_args()
22
+ opt.resume = False # Explicitly disallow resume check for dataset upload job
23
+
24
+ create_dataset_artifact(opt)
utils/wandb_logging/wandb_utils.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import sys
3
+ from pathlib import Path
4
+
5
+ import torch
6
+ import yaml
7
+ from tqdm import tqdm
8
+
9
+ sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
10
+ from utils.datasets import LoadImagesAndLabels
11
+ from utils.datasets import img2label_paths
12
+ from utils.general import colorstr, xywh2xyxy, check_dataset
13
+
14
+ try:
15
+ import wandb
16
+ from wandb import init, finish
17
+ except ImportError:
18
+ wandb = None
19
+
20
+ WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
21
+
22
+
23
+ def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
24
+ return from_string[len(prefix):]
25
+
26
+
27
+ def check_wandb_config_file(data_config_file):
28
+ wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
29
+ if Path(wandb_config).is_file():
30
+ return wandb_config
31
+ return data_config_file
32
+
33
+
34
+ def get_run_info(run_path):
35
+ run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
36
+ run_id = run_path.stem
37
+ project = run_path.parent.stem
38
+ model_artifact_name = 'run_' + run_id + '_model'
39
+ return run_id, project, model_artifact_name
40
+
41
+
42
+ def check_wandb_resume(opt):
43
+ process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
44
+ if isinstance(opt.resume, str):
45
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
46
+ if opt.global_rank not in [-1, 0]: # For resuming DDP runs
47
+ run_id, project, model_artifact_name = get_run_info(opt.resume)
48
+ api = wandb.Api()
49
+ artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
50
+ modeldir = artifact.download()
51
+ opt.weights = str(Path(modeldir) / "last.pt")
52
+ return True
53
+ return None
54
+
55
+
56
+ def process_wandb_config_ddp_mode(opt):
57
+ with open(opt.data) as f:
58
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
59
+ train_dir, val_dir = None, None
60
+ if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
61
+ api = wandb.Api()
62
+ train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
63
+ train_dir = train_artifact.download()
64
+ train_path = Path(train_dir) / 'data/images/'
65
+ data_dict['train'] = str(train_path)
66
+
67
+ if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
68
+ api = wandb.Api()
69
+ val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
70
+ val_dir = val_artifact.download()
71
+ val_path = Path(val_dir) / 'data/images/'
72
+ data_dict['val'] = str(val_path)
73
+ if train_dir or val_dir:
74
+ ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
75
+ with open(ddp_data_path, 'w') as f:
76
+ yaml.dump(data_dict, f)
77
+ opt.data = ddp_data_path
78
+
79
+
80
+ class WandbLogger():
81
+ def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
82
+ # Pre-training routine --
83
+ self.job_type = job_type
84
+ self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
85
+ # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
86
+ if isinstance(opt.resume, str): # checks resume from artifact
87
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
88
+ run_id, project, model_artifact_name = get_run_info(opt.resume)
89
+ model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
90
+ assert wandb, 'install wandb to resume wandb runs'
91
+ # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
92
+ self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
93
+ opt.resume = model_artifact_name
94
+ elif self.wandb:
95
+ self.wandb_run = wandb.init(config=opt,
96
+ resume="allow",
97
+ project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
98
+ name=name,
99
+ job_type=job_type,
100
+ id=run_id) if not wandb.run else wandb.run
101
+ if self.wandb_run:
102
+ if self.job_type == 'Training':
103
+ if not opt.resume:
104
+ wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
105
+ # Info useful for resuming from artifacts
106
+ self.wandb_run.config.opt = vars(opt)
107
+ self.wandb_run.config.data_dict = wandb_data_dict
108
+ self.data_dict = self.setup_training(opt, data_dict)
109
+ if self.job_type == 'Dataset Creation':
110
+ self.data_dict = self.check_and_upload_dataset(opt)
111
+ else:
112
+ prefix = colorstr('wandb: ')
113
+ print(f"{prefix}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
114
+
115
+ def check_and_upload_dataset(self, opt):
116
+ assert wandb, 'Install wandb to upload dataset'
117
+ check_dataset(self.data_dict)
118
+ config_path = self.log_dataset_artifact(opt.data,
119
+ opt.single_cls,
120
+ 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
121
+ print("Created dataset config file ", config_path)
122
+ with open(config_path) as f:
123
+ wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
124
+ return wandb_data_dict
125
+
126
+ def setup_training(self, opt, data_dict):
127
+ self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
128
+ self.bbox_interval = opt.bbox_interval
129
+ if isinstance(opt.resume, str):
130
+ modeldir, _ = self.download_model_artifact(opt)
131
+ if modeldir:
132
+ self.weights = Path(modeldir) / "last.pt"
133
+ config = self.wandb_run.config
134
+ opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
135
+ self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
136
+ config.opt['hyp']
137
+ data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
138
+ if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
139
+ self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
140
+ opt.artifact_alias)
141
+ self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
142
+ opt.artifact_alias)
143
+ self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
144
+ if self.train_artifact_path is not None:
145
+ train_path = Path(self.train_artifact_path) / 'data/images/'
146
+ data_dict['train'] = str(train_path)
147
+ if self.val_artifact_path is not None:
148
+ val_path = Path(self.val_artifact_path) / 'data/images/'
149
+ data_dict['val'] = str(val_path)
150
+ self.val_table = self.val_artifact.get("val")
151
+ self.map_val_table_path()
152
+ if self.val_artifact is not None:
153
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
154
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
155
+ if opt.bbox_interval == -1:
156
+ self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
157
+ return data_dict
158
+
159
+ def download_dataset_artifact(self, path, alias):
160
+ if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
161
+ dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
162
+ assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
163
+ datadir = dataset_artifact.download()
164
+ return datadir, dataset_artifact
165
+ return None, None
166
+
167
+ def download_model_artifact(self, opt):
168
+ if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
169
+ model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
170
+ assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
171
+ modeldir = model_artifact.download()
172
+ epochs_trained = model_artifact.metadata.get('epochs_trained')
173
+ total_epochs = model_artifact.metadata.get('total_epochs')
174
+ assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
175
+ total_epochs)
176
+ return modeldir, model_artifact
177
+ return None, None
178
+
179
+ def log_model(self, path, opt, epoch, fitness_score, best_model=False):
180
+ model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
181
+ 'original_url': str(path),
182
+ 'epochs_trained': epoch + 1,
183
+ 'save period': opt.save_period,
184
+ 'project': opt.project,
185
+ 'total_epochs': opt.epochs,
186
+ 'fitness_score': fitness_score
187
+ })
188
+ model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
189
+ wandb.log_artifact(model_artifact,
190
+ aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
191
+ print("Saving model artifact on epoch ", epoch + 1)
192
+
193
+ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
194
+ with open(data_file) as f:
195
+ data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
196
+ nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
197
+ names = {k: v for k, v in enumerate(names)} # to index dictionary
198
+ self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
199
+ data['train']), names, name='train') if data.get('train') else None
200
+ self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
201
+ data['val']), names, name='val') if data.get('val') else None
202
+ if data.get('train'):
203
+ data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
204
+ if data.get('val'):
205
+ data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
206
+ path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
207
+ data.pop('download', None)
208
+ with open(path, 'w') as f:
209
+ yaml.dump(data, f)
210
+
211
+ if self.job_type == 'Training': # builds correct artifact pipeline graph
212
+ self.wandb_run.use_artifact(self.val_artifact)
213
+ self.wandb_run.use_artifact(self.train_artifact)
214
+ self.val_artifact.wait()
215
+ self.val_table = self.val_artifact.get('val')
216
+ self.map_val_table_path()
217
+ else:
218
+ self.wandb_run.log_artifact(self.train_artifact)
219
+ self.wandb_run.log_artifact(self.val_artifact)
220
+ return path
221
+
222
+ def map_val_table_path(self):
223
+ self.val_table_map = {}
224
+ print("Mapping dataset")
225
+ for i, data in enumerate(tqdm(self.val_table.data)):
226
+ self.val_table_map[data[3]] = data[0]
227
+
228
+ def create_dataset_table(self, dataset, class_to_id, name='dataset'):
229
+ # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
230
+ artifact = wandb.Artifact(name=name, type="dataset")
231
+ img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
232
+ img_files = tqdm(dataset.img_files) if not img_files else img_files
233
+ for img_file in img_files:
234
+ if Path(img_file).is_dir():
235
+ artifact.add_dir(img_file, name='data/images')
236
+ labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
237
+ artifact.add_dir(labels_path, name='data/labels')
238
+ else:
239
+ artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
240
+ label_file = Path(img2label_paths([img_file])[0])
241
+ artifact.add_file(str(label_file),
242
+ name='data/labels/' + label_file.name) if label_file.exists() else None
243
+ table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
244
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
245
+ for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
246
+ height, width = shapes[0]
247
+ labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
248
+ box_data, img_classes = [], {}
249
+ for cls, *xyxy in labels[:, 1:].tolist():
250
+ cls = int(cls)
251
+ box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
252
+ "class_id": cls,
253
+ "box_caption": "%s" % (class_to_id[cls]),
254
+ "scores": {"acc": 1},
255
+ "domain": "pixel"})
256
+ img_classes[cls] = class_to_id[cls]
257
+ boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
258
+ table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
259
+ Path(paths).name)
260
+ artifact.add(table, name)
261
+ return artifact
262
+
263
+ def log_training_progress(self, predn, path, names):
264
+ if self.val_table and self.result_table:
265
+ class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
266
+ box_data = []
267
+ total_conf = 0
268
+ for *xyxy, conf, cls in predn.tolist():
269
+ if conf >= 0.25:
270
+ box_data.append(
271
+ {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
272
+ "class_id": int(cls),
273
+ "box_caption": "%s %.3f" % (names[cls], conf),
274
+ "scores": {"class_score": conf},
275
+ "domain": "pixel"})
276
+ total_conf = total_conf + conf
277
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
278
+ id = self.val_table_map[Path(path).name]
279
+ self.result_table.add_data(self.current_epoch,
280
+ id,
281
+ wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
282
+ total_conf / max(1, len(box_data))
283
+ )
284
+
285
+ def log(self, log_dict):
286
+ if self.wandb_run:
287
+ for key, value in log_dict.items():
288
+ self.log_dict[key] = value
289
+
290
+ def end_epoch(self, best_result=False):
291
+ if self.wandb_run:
292
+ wandb.log(self.log_dict)
293
+ self.log_dict = {}
294
+ if self.result_artifact:
295
+ train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
296
+ self.result_artifact.add(train_results, 'result')
297
+ wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
298
+ ('best' if best_result else '')])
299
+ self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
300
+ self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
301
+
302
+ def finish_run(self):
303
+ if self.wandb_run:
304
+ if self.log_dict:
305
+ wandb.log(self.log_dict)
306
+ wandb.run.finish()