File size: 41,615 Bytes
edad70f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
# Dataset utils and dataloaders

import glob
import logging
import math
import os
import random
import shutil
import time
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from threading import Thread

import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image, ExifTags
from torch.utils.data import Dataset
from tqdm import tqdm

from utils.general import xyxy2xywh, xywh2xyxy, xywhn2xyxy, clean_str
from utils.torch_utils import torch_distributed_zero_first

# Parameters
help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng']  # acceptable image suffixes
vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes
logger = logging.getLogger(__name__)

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == 'Orientation':
        break


def get_hash(files):
    # Returns a single hash value of a list of files
    return sum(os.path.getsize(f) for f in files if os.path.isfile(f))


def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    try:
        rotation = dict(img._getexif().items())[orientation]
        if rotation == 6:  # rotation 270
            s = (s[1], s[0])
        elif rotation == 8:  # rotation 90
            s = (s[1], s[0])
    except:
        pass

    return s


def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
                      rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
    # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
    with torch_distributed_zero_first(rank):
        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
                                      augment=augment,  # augment images
                                      hyp=hyp,  # augmentation hyperparameters
                                      rect=rect,  # rectangular training
                                      cache_images=cache,
                                      single_cls=opt.single_cls,
                                      stride=int(stride),
                                      pad=pad,
                                      image_weights=image_weights,
                                      prefix=prefix)

    batch_size = min(batch_size, len(dataset))
    nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers])  # number of workers
    sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
    loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
    # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
    dataloader = loader(dataset,
                        batch_size=batch_size,
                        num_workers=nw,
                        sampler=sampler,
                        pin_memory=True,
                        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
    return dataloader, dataset


class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
    """ Dataloader that reuses workers

    Uses same syntax as vanilla DataLoader
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
        self.iterator = super().__iter__()

    def __len__(self):
        return len(self.batch_sampler.sampler)

    def __iter__(self):
        for i in range(len(self)):
            yield next(self.iterator)


class _RepeatSampler(object):
    """ Sampler that repeats forever

    Args:
        sampler (Sampler)
    """

    def __init__(self, sampler):
        self.sampler = sampler

    def __iter__(self):
        while True:
            yield from iter(self.sampler)


class LoadImages:  # for inference
    def __init__(self, path, img_size=640):
        p = str(Path(path))  # os-agnostic
        p = os.path.abspath(p)  # absolute path
        if '*' in p:
            files = sorted(glob.glob(p, recursive=True))  # glob
        elif os.path.isdir(p):
            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
        elif os.path.isfile(p):
            files = [p]  # files
        else:
            raise Exception(f'ERROR: {p} does not exist')

        images = [x for x in files if x.split('.')[-1].lower() in img_formats]
        videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
        ni, nv = len(images), len(videos)

        self.img_size = img_size
        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv
        self.mode = 'image'
        if any(videos):
            self.new_video(videos[0])  # new video
        else:
            self.cap = None
        assert self.nf > 0, f'No images or videos found in {p}. ' \
                            f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'

    def __iter__(self):
        self.count = 0
        return self

    def __next__(self):
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]:
            # Read video
            self.mode = 'video'
            ret_val, img0 = self.cap.read()
            if not ret_val:
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                else:
                    path = self.files[self.count]
                    self.new_video(path)
                    ret_val, img0 = self.cap.read()

            self.frame += 1
            print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')

        else:
            # Read image
            self.count += 1
            img0 = cv2.imread(path)  # BGR
            assert img0 is not None, 'Image Not Found ' + path
            print(f'image {self.count}/{self.nf} {path}: ', end='')

        # Padded resize
        img = letterbox(img0, new_shape=self.img_size)[0]

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        return path, img, img0, self.cap

    def new_video(self, path):
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

    def __len__(self):
        return self.nf  # number of files


class LoadWebcam:  # for inference
    def __init__(self, pipe='0', img_size=640):
        self.img_size = img_size

        if pipe.isnumeric():
            pipe = eval(pipe)  # local camera
        # pipe = 'rtsp://192.168.1.64/1'  # IP camera
        # pipe = 'rtsp://username:[email protected]/1'  # IP camera with login
        # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg'  # IP golf camera

        self.pipe = pipe
        self.cap = cv2.VideoCapture(pipe)  # video capture object
        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if cv2.waitKey(1) == ord('q'):  # q to quit
            self.cap.release()
            cv2.destroyAllWindows()
            raise StopIteration

        # Read frame
        if self.pipe == 0:  # local camera
            ret_val, img0 = self.cap.read()
            img0 = cv2.flip(img0, 1)  # flip left-right
        else:  # IP camera
            n = 0
            while True:
                n += 1
                self.cap.grab()
                if n % 30 == 0:  # skip frames
                    ret_val, img0 = self.cap.retrieve()
                    if ret_val:
                        break

        # Print
        assert ret_val, f'Camera Error {self.pipe}'
        img_path = 'webcam.jpg'
        print(f'webcam {self.count}: ', end='')

        # Padded resize
        img = letterbox(img0, new_shape=self.img_size)[0]

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        return img_path, img, img0, None

    def __len__(self):
        return 0


class LoadStreams:  # multiple IP or RTSP cameras
    def __init__(self, sources='streams.txt', img_size=640):
        self.mode = 'stream'
        self.img_size = img_size

        if os.path.isfile(sources):
            with open(sources, 'r') as f:
                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
        else:
            sources = [sources]

        n = len(sources)
        self.imgs = [None] * n
        self.sources = [clean_str(x) for x in sources]  # clean source names for later
        for i, s in enumerate(sources):
            # Start the thread to read frames from the video stream
            print(f'{i + 1}/{n}: {s}... ', end='')
            cap = cv2.VideoCapture(eval(s) if s.isnumeric() else s)
            assert cap.isOpened(), f'Failed to open {s}'
            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = cap.get(cv2.CAP_PROP_FPS) % 100
            _, self.imgs[i] = cap.read()  # guarantee first frame
            thread = Thread(target=self.update, args=([i, cap]), daemon=True)
            print(f' success ({w}x{h} at {fps:.2f} FPS).')
            thread.start()
        print('')  # newline

        # check for common shapes
        s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0)  # inference shapes
        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
        if not self.rect:
            print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')

    def update(self, index, cap):
        # Read next stream frame in a daemon thread
        n = 0
        while cap.isOpened():
            n += 1
            # _, self.imgs[index] = cap.read()
            cap.grab()
            if n == 4:  # read every 4th frame
                _, self.imgs[index] = cap.retrieve()
                n = 0
            time.sleep(0.01)  # wait time

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        img0 = self.imgs.copy()
        if cv2.waitKey(1) == ord('q'):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        # Letterbox
        img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]

        # Stack
        img = np.stack(img, 0)

        # Convert
        img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB, to bsx3x416x416
        img = np.ascontiguousarray(img)

        return self.sources, img, img0, None

    def __len__(self):
        return 0  # 1E12 frames = 32 streams at 30 FPS for 30 years


def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
    return [x.replace(sa, sb, 1).replace('.' + x.split('.')[-1], '.txt') for x in img_paths]


class LoadImagesAndLabels(Dataset):  # for training/testing
    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
        self.img_size = img_size
        self.augment = augment
        self.hyp = hyp
        self.image_weights = image_weights
        self.rect = False if image_weights else rect
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride

        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
                elif p.is_file():  # file
                    with open(p, 'r') as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
                else:
                    raise Exception(f'{prefix}{p} does not exist')
            self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
            assert self.img_files, f'{prefix}No images found'
        except Exception as e:
            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')

        # Check cache
        self.label_files = img2label_paths(self.img_files)  # labels
        cache_path = Path(self.label_files[0]).parent.with_suffix('.cache')  # cached labels
        if cache_path.is_file():
            cache = torch.load(cache_path)  # load
            if cache['hash'] != get_hash(self.label_files + self.img_files) or 'results' not in cache:  # changed
                cache = self.cache_labels(cache_path, prefix)  # re-cache
        else:
            cache = self.cache_labels(cache_path, prefix)  # cache

        # Display cache
        [nf, nm, ne, nc, n] = cache.pop('results')  # found, missing, empty, corrupted, total
        desc = f"Scanning '{cache_path}' for images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
        tqdm(None, desc=prefix + desc, total=n, initial=n)
        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'

        # Read cache
        cache.pop('hash')  # remove hash
        labels, shapes = zip(*cache.values())
        self.labels = list(labels)
        self.shapes = np.array(shapes, dtype=np.float64)
        self.img_files = list(cache.keys())  # update
        self.label_files = img2label_paths(cache.keys())  # update
        if single_cls:
            for x in self.labels:
                x[:, 0] = 0

        n = len(shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n)

        # Rectangular Training
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.img_files = [self.img_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
        self.imgs = [None] * n
        if cache_images:
            gb = 0  # Gigabytes of cached images
            self.img_hw0, self.img_hw = [None] * n, [None] * n
            results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))  # 8 threads
            pbar = tqdm(enumerate(results), total=n)
            for i, x in pbar:
                self.imgs[i], self.img_hw0[i], self.img_hw[i] = x  # img, hw_original, hw_resized = load_image(self, i)
                gb += self.imgs[i].nbytes
                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'

    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc = 0, 0, 0, 0  # number missing, found, empty, duplicate
        pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
        for i, (im_file, lb_file) in enumerate(pbar):
            try:
                # verify images
                im = Image.open(im_file)
                im.verify()  # PIL verify
                shape = exif_size(im)  # image size
                assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'

                # verify labels
                if os.path.isfile(lb_file):
                    nf += 1  # label found
                    with open(lb_file, 'r') as f:
                        l = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
                    if len(l):
                        assert l.shape[1] == 5, 'labels require 5 columns each'
                        assert (l >= 0).all(), 'negative labels'
                        assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
                        assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
                    else:
                        ne += 1  # label empty
                        l = np.zeros((0, 5), dtype=np.float32)
                else:
                    nm += 1  # label missing
                    l = np.zeros((0, 5), dtype=np.float32)
                x[im_file] = [l, shape]
            except Exception as e:
                nc += 1
                print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')

            pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' for images and labels... " \
                        f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"

        if nf == 0:
            print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')

        x['hash'] = get_hash(self.label_files + self.img_files)
        x['results'] = [nf, nm, ne, nc, i + 1]
        torch.save(x, path)  # save for next time
        logging.info(f'{prefix}New cache created: {path}')
        return x

    def __len__(self):
        return len(self.img_files)

    # def __iter__(self):
    #     self.count = -1
    #     print('ran dataset iter')
    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
    #     return self

    def __getitem__(self, index):
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        mosaic = self.mosaic and random.random() < hyp['mosaic']
        if mosaic:
            # Load mosaic
            img, labels = load_mosaic(self, index)
            shapes = None

            # MixUp https://arxiv.org/pdf/1710.09412.pdf
            if random.random() < hyp['mixup']:
                img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
                r = np.random.beta(8.0, 8.0)  # mixup ratio, alpha=beta=8.0
                img = (img * r + img2 * (1 - r)).astype(np.uint8)
                labels = np.concatenate((labels, labels2), 0)

        else:
            # Load image
            img, (h0, w0), (h, w) = load_image(self, index)

            # Letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

        if self.augment:
            # Augment imagespace
            if not mosaic:
                img, labels = random_perspective(img, labels,
                                                 degrees=hyp['degrees'],
                                                 translate=hyp['translate'],
                                                 scale=hyp['scale'],
                                                 shear=hyp['shear'],
                                                 perspective=hyp['perspective'])

            # Augment colorspace
            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])

            # Apply cutouts
            # if random.random() < 0.9:
            #     labels = cutout(img, labels)

        nL = len(labels)  # number of labels
        if nL:
            labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])  # convert xyxy to xywh
            labels[:, [2, 4]] /= img.shape[0]  # normalized height 0-1
            labels[:, [1, 3]] /= img.shape[1]  # normalized width 0-1

        if self.augment:
            # flip up-down
            if random.random() < hyp['flipud']:
                img = np.flipud(img)
                if nL:
                    labels[:, 2] = 1 - labels[:, 2]

            # flip left-right
            if random.random() < hyp['fliplr']:
                img = np.fliplr(img)
                if nL:
                    labels[:, 1] = 1 - labels[:, 1]

        labels_out = torch.zeros((nL, 6))
        if nL:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        return torch.from_numpy(img), labels_out, self.img_files[index], shapes

    @staticmethod
    def collate_fn(batch):
        img, label, path, shapes = zip(*batch)  # transposed
        for i, l in enumerate(label):
            l[:, 0] = i  # add target image index for build_targets()
        return torch.stack(img, 0), torch.cat(label, 0), path, shapes

    @staticmethod
    def collate_fn4(batch):
        img, label, path, shapes = zip(*batch)  # transposed
        n = len(shapes) // 4
        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

        ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
        wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
        s = torch.tensor([[1, 1, .5, .5, .5, .5]])  # scale
        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
            i *= 4
            if random.random() < 0.5:
                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
                    0].type(img[i].type())
                l = label[i]
            else:
                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
                l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
            img4.append(im)
            label4.append(l)

        for i, l in enumerate(label4):
            l[:, 0] = i  # add target image index for build_targets()

        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4


# Ancillary functions --------------------------------------------------------------------------------------------------
def load_image(self, index):
    # loads 1 image from dataset, returns img, original hw, resized hw
    img = self.imgs[index]
    if img is None:  # not cached
        path = self.img_files[index]
        img = cv2.imread(path)  # BGR
        assert img is not None, 'Image Not Found ' + path
        h0, w0 = img.shape[:2]  # orig hw
        r = self.img_size / max(h0, w0)  # resize image to img_size
        if r != 1:  # always resize down, only resize up if training with augmentation
            interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
        return img, (h0, w0), img.shape[:2]  # img, hw_original, hw_resized
    else:
        return self.imgs[index], self.img_hw0[index], self.img_hw[index]  # img, hw_original, hw_resized


def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
    r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
    dtype = img.dtype  # uint8

    x = np.arange(0, 256, dtype=np.int16)
    lut_hue = ((x * r[0]) % 180).astype(dtype)
    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
    lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

    img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed

    # Histogram equalization
    # if random.random() < 0.2:
    #     for i in range(3):
    #         img[:, :, i] = cv2.equalizeHist(img[:, :, i])


def load_mosaic(self, index):
    # loads images in a 4-mosaic

    labels4 = []
    s = self.img_size
    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
    indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(3)]  # 3 additional image indices
    for i, index in enumerate(indices):
        # Load image
        img, _, (h, w) = load_image(self, index)

        # place img in img4
        if i == 0:  # top left
            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
        elif i == 1:  # top right
            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
        elif i == 2:  # bottom left
            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
        elif i == 3:  # bottom right
            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        padw = x1a - x1b
        padh = y1a - y1b

        # Labels
        labels = self.labels[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
        labels4.append(labels)

    # Concat/clip labels
    if len(labels4):
        labels4 = np.concatenate(labels4, 0)
        np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:])  # use with random_perspective
        # img4, labels4 = replicate(img4, labels4)  # replicate

    # Augment
    img4, labels4 = random_perspective(img4, labels4,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img4, labels4


def load_mosaic9(self, index):
    # loads images in a 9-mosaic

    labels9 = []
    s = self.img_size
    indices = [index] + [self.indices[random.randint(0, self.n - 1)] for _ in range(8)]  # 8 additional image indices
    for i, index in enumerate(indices):
        # Load image
        img, _, (h, w) = load_image(self, index)

        # place img in img9
        if i == 0:  # center
            img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            h0, w0 = h, w
            c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
        elif i == 1:  # top
            c = s, s - h, s + w, s
        elif i == 2:  # top right
            c = s + wp, s - h, s + wp + w, s
        elif i == 3:  # right
            c = s + w0, s, s + w0 + w, s + h
        elif i == 4:  # bottom right
            c = s + w0, s + hp, s + w0 + w, s + hp + h
        elif i == 5:  # bottom
            c = s + w0 - w, s + h0, s + w0, s + h0 + h
        elif i == 6:  # bottom left
            c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
        elif i == 7:  # left
            c = s - w, s + h0 - h, s, s + h0
        elif i == 8:  # top left
            c = s - w, s + h0 - hp - h, s, s + h0 - hp

        padx, pady = c[:2]
        x1, y1, x2, y2 = [max(x, 0) for x in c]  # allocate coords

        # Labels
        labels = self.labels[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
        labels9.append(labels)

        # Image
        img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
        hp, wp = h, w  # height, width previous

    # Offset
    yc, xc = [int(random.uniform(0, s)) for x in self.mosaic_border]  # mosaic center x, y
    img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]

    # Concat/clip labels
    if len(labels9):
        labels9 = np.concatenate(labels9, 0)
        labels9[:, [1, 3]] -= xc
        labels9[:, [2, 4]] -= yc

        np.clip(labels9[:, 1:], 0, 2 * s, out=labels9[:, 1:])  # use with random_perspective
        # img9, labels9 = replicate(img9, labels9)  # replicate

    # Augment
    img9, labels9 = random_perspective(img9, labels9,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img9, labels9


def replicate(img, labels):
    # Replicate labels
    h, w = img.shape[:2]
    boxes = labels[:, 1:].astype(int)
    x1, y1, x2, y2 = boxes.T
    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
        x1b, y1b, x2b, y2b = boxes[i]
        bh, bw = y2b - y1b, x2b - x1b
        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
        img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)

    return img, labels


def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return img, ratio, (dw, dh)


def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]

    height = img.shape[0] + border[0] * 2  # shape(h,w,c)
    width = img.shape[1] + border[1] * 2

    # Center
    C = np.eye(3)
    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3)
    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
        else:  # affine
            img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(img[:, :, ::-1])  # base
    # ax[1].imshow(img2[:, :, ::-1])  # warped

    # Transform label coordinates
    n = len(targets)
    if n:
        # warp points
        xy = np.ones((n * 4, 3))
        xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
        xy = xy @ M.T  # transform
        if perspective:
            xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8)  # rescale
        else:  # affine
            xy = xy[:, :2].reshape(n, 8)

        # create new boxes
        x = xy[:, [0, 2, 4, 6]]
        y = xy[:, [1, 3, 5, 7]]
        xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

        # # apply angle-based reduction of bounding boxes
        # radians = a * math.pi / 180
        # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
        # x = (xy[:, 2] + xy[:, 0]) / 2
        # y = (xy[:, 3] + xy[:, 1]) / 2
        # w = (xy[:, 2] - xy[:, 0]) * reduction
        # h = (xy[:, 3] - xy[:, 1]) * reduction
        # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T

        # clip boxes
        xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
        xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)

        # filter candidates
        i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
        targets = targets[i]
        targets[:, 1:5] = xy[i]

    return img, targets


def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates


def cutout(image, labels):
    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
    h, w = image.shape[:2]

    def bbox_ioa(box1, box2):
        # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
        box2 = box2.transpose()

        # Get the coordinates of bounding boxes
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]

        # Intersection area
        inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
                     (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)

        # box2 area
        box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16

        # Intersection over box2 area
        return inter_area / box2_area

    # create random masks
    scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
    for s in scales:
        mask_h = random.randint(1, int(h * s))
        mask_w = random.randint(1, int(w * s))

        # box
        xmin = max(0, random.randint(0, w) - mask_w // 2)
        ymin = max(0, random.randint(0, h) - mask_h // 2)
        xmax = min(w, xmin + mask_w)
        ymax = min(h, ymin + mask_h)

        # apply random color mask
        image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]

        # return unobscured labels
        if len(labels) and s > 0.03:
            box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
            labels = labels[ioa < 0.60]  # remove >60% obscured labels

    return labels


def create_folder(path='./new'):
    # Create folder
    if os.path.exists(path):
        shutil.rmtree(path)  # delete output folder
    os.makedirs(path)  # make new output folder


def flatten_recursive(path='../coco128'):
    # Flatten a recursive directory by bringing all files to top level
    new_path = Path(path + '_flat')
    create_folder(new_path)
    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
        shutil.copyfile(file, new_path / Path(file).name)


def extract_boxes(path='../coco128/'):  # from utils.datasets import *; extract_boxes('../coco128')
    # Convert detection dataset into classification dataset, with one directory per class

    path = Path(path)  # images dir
    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
    files = list(path.rglob('*.*'))
    n = len(files)  # number of files
    for im_file in tqdm(files, total=n):
        if im_file.suffix[1:] in img_formats:
            # image
            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
            h, w = im.shape[:2]

            # labels
            lb_file = Path(img2label_paths([str(im_file)])[0])
            if Path(lb_file).exists():
                with open(lb_file, 'r') as f:
                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels

                for j, x in enumerate(lb):
                    c = int(x[0])  # class
                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
                    if not f.parent.is_dir():
                        f.parent.mkdir(parents=True)

                    b = x[1:] * [w, h, w, h]  # box
                    # b[2:] = b[2:].max()  # rectangle to square
                    b[2:] = b[2:] * 1.2 + 3  # pad
                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)

                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'


def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0)):  # from utils.datasets import *; autosplit('../coco128')
    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
    # Arguments
        path:       Path to images directory
        weights:    Train, val, test weights (list)
    """
    path = Path(path)  # images dir
    files = list(path.rglob('*.*'))
    n = len(files)  # number of files
    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
    [(path / x).unlink() for x in txt if (path / x).exists()]  # remove existing
    for i, img in tqdm(zip(indices, files), total=n):
        if img.suffix[1:] in img_formats:
            with open(path / txt[i], 'a') as f:
                f.write(str(img) + '\n')  # add image to txt file