kAIto47802
Resolved conflict in README.md
b55d767
raw
history blame
6.9 kB
from __future__ import annotations
from collections.abc import Generator
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import (
GroupKFold,
KFold,
StratifiedGroupKFold,
StratifiedKFold,
)
from utmosv2.loss import CombinedLoss, PairwizeDiffLoss
def split_data(
cfg, data: pd.DataFrame
) -> Generator[tuple[np.ndarray, np.ndarray], None, None]:
if cfg.print_config:
print(f"Using split: {cfg.split.type}")
if cfg.split.type == "simple":
kf = KFold(n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed)
for train_idx, valid_idx in kf.split(data):
yield train_idx, valid_idx
elif cfg.split.type == "stratified":
kf = StratifiedKFold(
n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
)
for train_idx, valid_idx in kf.split(data, data[cfg.split.target].astype(int)):
yield train_idx, valid_idx
elif cfg.split.type == "group":
kf = GroupKFold(n_splits=cfg.num_folds)
for train_idx, valid_idx in kf.split(data, groups=data[cfg.split.group]):
yield train_idx, valid_idx
elif cfg.split.type == "stratified_group":
kf = StratifiedGroupKFold(
n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
)
for train_idx, valid_idx in kf.split(
data, data[cfg.split.target].astype(int), groups=data[cfg.split.group]
):
yield train_idx, valid_idx
elif cfg.split.type == "sgkf_kind":
kind = data[cfg.split.kind].unique()
kf = [
StratifiedGroupKFold(
n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
)
for _ in range(len(kind))
]
kf = [
kf_i.split(
data[data[cfg.split.kind] == ds],
data[data[cfg.split.kind] == ds][cfg.split.target].astype(int),
groups=data[data[cfg.split.kind] == ds][cfg.split.group],
)
for kf_i, ds in zip(kf, kind)
]
for ds_idx in zip(*kf):
train_idx = np.concatenate([d[0] for d in ds_idx])
valid_idx = np.concatenate([d[1] for d in ds_idx])
yield train_idx, valid_idx
else:
raise NotImplementedError
def get_dataloader(
cfg, dataset: torch.utils.data.Dataset, phase: str
) -> torch.utils.data.DataLoader:
if phase == "train":
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.num_workers,
pin_memory=True,
)
elif phase == "valid":
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
)
elif phase == "test":
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.inference.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
)
else:
raise ValueError(f"Phase must be one of [train, valid, test], but got {phase}")
def _get_unit_loss(loss_cfg) -> nn.Module:
if loss_cfg.name == "pairwize_diff":
return PairwizeDiffLoss(loss_cfg.margin, loss_cfg.norm)
elif loss_cfg.name == "mse":
return nn.MSELoss()
else:
raise NotImplementedError
def _get_combined_loss(cfg) -> nn.Module:
if cfg.print_config:
print(
"Using losses: "
+ ", ".join([f"{loss_cfg.name} ({w})" for loss_cfg, w in cfg.loss])
)
weighted_losses = [(_get_unit_loss(loss_cfg), w) for loss_cfg, w in cfg.loss]
return CombinedLoss(weighted_losses)
def get_loss(cfg) -> nn.Module:
if isinstance(cfg.loss, list):
return _get_combined_loss(cfg)
else:
return _get_unit_loss(cfg.loss)
def get_optimizer(cfg, model: nn.Module) -> optim.Optimizer:
if cfg.print_config:
print(f"Using optimizer: {cfg.optimizer.name}")
if cfg.optimizer.name == "adam":
return optim.Adam(model.parameters(), lr=cfg.optimizer.lr)
elif cfg.optimizer.name == "adamw":
return optim.AdamW(
model.parameters(),
lr=cfg.optimizer.lr,
weight_decay=cfg.optimizer.weight_decay,
)
elif cfg.optimizer.name == "sgd":
return optim.SGD(
model.parameters(),
lr=cfg.optimizer.lr,
weight_decay=cfg.optimizer.weight_decay,
)
else:
raise NotImplementedError
def get_scheduler(
cfg, optimizer: optim.Optimizer, n_iterations: int
) -> optim.lr_scheduler._LRScheduler:
if cfg.print_config:
print(f"Using scheduler: {cfg.scheduler}")
if cfg.scheduler is None:
return optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1)
if cfg.scheduler.name == "cosine":
return optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=cfg.scheduler.T_max or n_iterations,
eta_min=cfg.scheduler.eta_min,
)
else:
raise NotImplementedError
def print_metrics(metrics: dict[str, float]):
print(", ".join([f"{k}: {v:.4f}" for k, v in metrics.items()]))
def save_oof_preds(cfg, data: pd.DataFrame, oof_preds: np.ndarray, fold: int):
oof_df = pd.DataFrame({cfg.id_name: data[cfg.id_name], "oof_preds": oof_preds})
oof_df.to_csv(
cfg.save_path / f"fold{fold}_s{cfg.split.seed}_oof_preds.csv", index=False
)
def configure_args(cfg, args):
cfg.fold = args.fold
cfg.split.seed = args.seed
cfg.config_name = args.config
cfg.input_dir = args.input_dir and Path(args.input_dir)
cfg.num_workers = args.num_workers
cfg.weight = args.weight
cfg.save_path = Path("models") / cfg.config_name
cfg.wandb = args.wandb
cfg.reproduce = args.reproduce
cfg.data_config = args.data_config
cfg.phase = "train"
def configure_inference_args(cfg, args):
cfg.inference.fold = args.fold
cfg.split.seed = args.seed
cfg.config_name = args.config
cfg.input_dir = args.input_dir and Path(args.input_dir)
cfg.input_path = args.input_path and Path(args.input_path)
cfg.num_workers = args.num_workers
cfg.weight = args.weight
cfg.inference.val_list_path = args.val_list_path and Path(args.val_list_path)
cfg.save_path = Path("models") / cfg.config_name
cfg.predict_dataset = args.predict_dataset
cfg.final = args.final
cfg.inference.num_tta = args.num_repetitions
cfg.reproduce = args.reproduce
cfg.out_path = args.out_path and Path(args.out_path)
cfg.data_config = None
cfg.phase = "inference"