File size: 6,904 Bytes
b55d767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from __future__ import annotations

from collections.abc import Generator
from pathlib import Path

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import (
    GroupKFold,
    KFold,
    StratifiedGroupKFold,
    StratifiedKFold,
)

from utmosv2.loss import CombinedLoss, PairwizeDiffLoss


def split_data(
    cfg, data: pd.DataFrame
) -> Generator[tuple[np.ndarray, np.ndarray], None, None]:
    if cfg.print_config:
        print(f"Using split: {cfg.split.type}")
    if cfg.split.type == "simple":
        kf = KFold(n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed)
        for train_idx, valid_idx in kf.split(data):
            yield train_idx, valid_idx
    elif cfg.split.type == "stratified":
        kf = StratifiedKFold(
            n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
        )
        for train_idx, valid_idx in kf.split(data, data[cfg.split.target].astype(int)):
            yield train_idx, valid_idx
    elif cfg.split.type == "group":
        kf = GroupKFold(n_splits=cfg.num_folds)
        for train_idx, valid_idx in kf.split(data, groups=data[cfg.split.group]):
            yield train_idx, valid_idx
    elif cfg.split.type == "stratified_group":
        kf = StratifiedGroupKFold(
            n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
        )
        for train_idx, valid_idx in kf.split(
            data, data[cfg.split.target].astype(int), groups=data[cfg.split.group]
        ):
            yield train_idx, valid_idx
    elif cfg.split.type == "sgkf_kind":
        kind = data[cfg.split.kind].unique()
        kf = [
            StratifiedGroupKFold(
                n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
            )
            for _ in range(len(kind))
        ]
        kf = [
            kf_i.split(
                data[data[cfg.split.kind] == ds],
                data[data[cfg.split.kind] == ds][cfg.split.target].astype(int),
                groups=data[data[cfg.split.kind] == ds][cfg.split.group],
            )
            for kf_i, ds in zip(kf, kind)
        ]
        for ds_idx in zip(*kf):
            train_idx = np.concatenate([d[0] for d in ds_idx])
            valid_idx = np.concatenate([d[1] for d in ds_idx])
            yield train_idx, valid_idx
    else:
        raise NotImplementedError


def get_dataloader(
    cfg, dataset: torch.utils.data.Dataset, phase: str
) -> torch.utils.data.DataLoader:
    if phase == "train":
        return torch.utils.data.DataLoader(
            dataset,
            batch_size=cfg.batch_size,
            shuffle=True,
            num_workers=cfg.num_workers,
            pin_memory=True,
        )
    elif phase == "valid":
        return torch.utils.data.DataLoader(
            dataset,
            batch_size=cfg.batch_size,
            shuffle=False,
            num_workers=cfg.num_workers,
            pin_memory=True,
        )
    elif phase == "test":
        return torch.utils.data.DataLoader(
            dataset,
            batch_size=cfg.inference.batch_size,
            shuffle=False,
            num_workers=cfg.num_workers,
            pin_memory=True,
        )
    else:
        raise ValueError(f"Phase must be one of [train, valid, test], but got {phase}")


def _get_unit_loss(loss_cfg) -> nn.Module:
    if loss_cfg.name == "pairwize_diff":
        return PairwizeDiffLoss(loss_cfg.margin, loss_cfg.norm)
    elif loss_cfg.name == "mse":
        return nn.MSELoss()
    else:
        raise NotImplementedError


def _get_combined_loss(cfg) -> nn.Module:
    if cfg.print_config:
        print(
            "Using losses: "
            + ", ".join([f"{loss_cfg.name} ({w})" for loss_cfg, w in cfg.loss])
        )
    weighted_losses = [(_get_unit_loss(loss_cfg), w) for loss_cfg, w in cfg.loss]
    return CombinedLoss(weighted_losses)


def get_loss(cfg) -> nn.Module:
    if isinstance(cfg.loss, list):
        return _get_combined_loss(cfg)
    else:
        return _get_unit_loss(cfg.loss)


def get_optimizer(cfg, model: nn.Module) -> optim.Optimizer:
    if cfg.print_config:
        print(f"Using optimizer: {cfg.optimizer.name}")
    if cfg.optimizer.name == "adam":
        return optim.Adam(model.parameters(), lr=cfg.optimizer.lr)
    elif cfg.optimizer.name == "adamw":
        return optim.AdamW(
            model.parameters(),
            lr=cfg.optimizer.lr,
            weight_decay=cfg.optimizer.weight_decay,
        )
    elif cfg.optimizer.name == "sgd":
        return optim.SGD(
            model.parameters(),
            lr=cfg.optimizer.lr,
            weight_decay=cfg.optimizer.weight_decay,
        )
    else:
        raise NotImplementedError


def get_scheduler(
    cfg, optimizer: optim.Optimizer, n_iterations: int
) -> optim.lr_scheduler._LRScheduler:
    if cfg.print_config:
        print(f"Using scheduler: {cfg.scheduler}")
    if cfg.scheduler is None:
        return optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1)
    if cfg.scheduler.name == "cosine":
        return optim.lr_scheduler.CosineAnnealingLR(
            optimizer,
            T_max=cfg.scheduler.T_max or n_iterations,
            eta_min=cfg.scheduler.eta_min,
        )
    else:
        raise NotImplementedError


def print_metrics(metrics: dict[str, float]):
    print(", ".join([f"{k}: {v:.4f}" for k, v in metrics.items()]))


def save_oof_preds(cfg, data: pd.DataFrame, oof_preds: np.ndarray, fold: int):
    oof_df = pd.DataFrame({cfg.id_name: data[cfg.id_name], "oof_preds": oof_preds})
    oof_df.to_csv(
        cfg.save_path / f"fold{fold}_s{cfg.split.seed}_oof_preds.csv", index=False
    )


def configure_args(cfg, args):
    cfg.fold = args.fold
    cfg.split.seed = args.seed
    cfg.config_name = args.config
    cfg.input_dir = args.input_dir and Path(args.input_dir)
    cfg.num_workers = args.num_workers
    cfg.weight = args.weight
    cfg.save_path = Path("models") / cfg.config_name
    cfg.wandb = args.wandb
    cfg.reproduce = args.reproduce
    cfg.data_config = args.data_config
    cfg.phase = "train"


def configure_inference_args(cfg, args):
    cfg.inference.fold = args.fold
    cfg.split.seed = args.seed
    cfg.config_name = args.config
    cfg.input_dir = args.input_dir and Path(args.input_dir)
    cfg.input_path = args.input_path and Path(args.input_path)
    cfg.num_workers = args.num_workers
    cfg.weight = args.weight
    cfg.inference.val_list_path = args.val_list_path and Path(args.val_list_path)
    cfg.save_path = Path("models") / cfg.config_name
    cfg.predict_dataset = args.predict_dataset
    cfg.final = args.final
    cfg.inference.num_tta = args.num_repetitions
    cfg.reproduce = args.reproduce
    cfg.out_path = args.out_path and Path(args.out_path)
    cfg.data_config = None
    cfg.phase = "inference"