Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,904 Bytes
b55d767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
from __future__ import annotations
from collections.abc import Generator
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import (
GroupKFold,
KFold,
StratifiedGroupKFold,
StratifiedKFold,
)
from utmosv2.loss import CombinedLoss, PairwizeDiffLoss
def split_data(
cfg, data: pd.DataFrame
) -> Generator[tuple[np.ndarray, np.ndarray], None, None]:
if cfg.print_config:
print(f"Using split: {cfg.split.type}")
if cfg.split.type == "simple":
kf = KFold(n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed)
for train_idx, valid_idx in kf.split(data):
yield train_idx, valid_idx
elif cfg.split.type == "stratified":
kf = StratifiedKFold(
n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
)
for train_idx, valid_idx in kf.split(data, data[cfg.split.target].astype(int)):
yield train_idx, valid_idx
elif cfg.split.type == "group":
kf = GroupKFold(n_splits=cfg.num_folds)
for train_idx, valid_idx in kf.split(data, groups=data[cfg.split.group]):
yield train_idx, valid_idx
elif cfg.split.type == "stratified_group":
kf = StratifiedGroupKFold(
n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
)
for train_idx, valid_idx in kf.split(
data, data[cfg.split.target].astype(int), groups=data[cfg.split.group]
):
yield train_idx, valid_idx
elif cfg.split.type == "sgkf_kind":
kind = data[cfg.split.kind].unique()
kf = [
StratifiedGroupKFold(
n_splits=cfg.num_folds, shuffle=True, random_state=cfg.split.seed
)
for _ in range(len(kind))
]
kf = [
kf_i.split(
data[data[cfg.split.kind] == ds],
data[data[cfg.split.kind] == ds][cfg.split.target].astype(int),
groups=data[data[cfg.split.kind] == ds][cfg.split.group],
)
for kf_i, ds in zip(kf, kind)
]
for ds_idx in zip(*kf):
train_idx = np.concatenate([d[0] for d in ds_idx])
valid_idx = np.concatenate([d[1] for d in ds_idx])
yield train_idx, valid_idx
else:
raise NotImplementedError
def get_dataloader(
cfg, dataset: torch.utils.data.Dataset, phase: str
) -> torch.utils.data.DataLoader:
if phase == "train":
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=True,
num_workers=cfg.num_workers,
pin_memory=True,
)
elif phase == "valid":
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
)
elif phase == "test":
return torch.utils.data.DataLoader(
dataset,
batch_size=cfg.inference.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
)
else:
raise ValueError(f"Phase must be one of [train, valid, test], but got {phase}")
def _get_unit_loss(loss_cfg) -> nn.Module:
if loss_cfg.name == "pairwize_diff":
return PairwizeDiffLoss(loss_cfg.margin, loss_cfg.norm)
elif loss_cfg.name == "mse":
return nn.MSELoss()
else:
raise NotImplementedError
def _get_combined_loss(cfg) -> nn.Module:
if cfg.print_config:
print(
"Using losses: "
+ ", ".join([f"{loss_cfg.name} ({w})" for loss_cfg, w in cfg.loss])
)
weighted_losses = [(_get_unit_loss(loss_cfg), w) for loss_cfg, w in cfg.loss]
return CombinedLoss(weighted_losses)
def get_loss(cfg) -> nn.Module:
if isinstance(cfg.loss, list):
return _get_combined_loss(cfg)
else:
return _get_unit_loss(cfg.loss)
def get_optimizer(cfg, model: nn.Module) -> optim.Optimizer:
if cfg.print_config:
print(f"Using optimizer: {cfg.optimizer.name}")
if cfg.optimizer.name == "adam":
return optim.Adam(model.parameters(), lr=cfg.optimizer.lr)
elif cfg.optimizer.name == "adamw":
return optim.AdamW(
model.parameters(),
lr=cfg.optimizer.lr,
weight_decay=cfg.optimizer.weight_decay,
)
elif cfg.optimizer.name == "sgd":
return optim.SGD(
model.parameters(),
lr=cfg.optimizer.lr,
weight_decay=cfg.optimizer.weight_decay,
)
else:
raise NotImplementedError
def get_scheduler(
cfg, optimizer: optim.Optimizer, n_iterations: int
) -> optim.lr_scheduler._LRScheduler:
if cfg.print_config:
print(f"Using scheduler: {cfg.scheduler}")
if cfg.scheduler is None:
return optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: 1)
if cfg.scheduler.name == "cosine":
return optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=cfg.scheduler.T_max or n_iterations,
eta_min=cfg.scheduler.eta_min,
)
else:
raise NotImplementedError
def print_metrics(metrics: dict[str, float]):
print(", ".join([f"{k}: {v:.4f}" for k, v in metrics.items()]))
def save_oof_preds(cfg, data: pd.DataFrame, oof_preds: np.ndarray, fold: int):
oof_df = pd.DataFrame({cfg.id_name: data[cfg.id_name], "oof_preds": oof_preds})
oof_df.to_csv(
cfg.save_path / f"fold{fold}_s{cfg.split.seed}_oof_preds.csv", index=False
)
def configure_args(cfg, args):
cfg.fold = args.fold
cfg.split.seed = args.seed
cfg.config_name = args.config
cfg.input_dir = args.input_dir and Path(args.input_dir)
cfg.num_workers = args.num_workers
cfg.weight = args.weight
cfg.save_path = Path("models") / cfg.config_name
cfg.wandb = args.wandb
cfg.reproduce = args.reproduce
cfg.data_config = args.data_config
cfg.phase = "train"
def configure_inference_args(cfg, args):
cfg.inference.fold = args.fold
cfg.split.seed = args.seed
cfg.config_name = args.config
cfg.input_dir = args.input_dir and Path(args.input_dir)
cfg.input_path = args.input_path and Path(args.input_path)
cfg.num_workers = args.num_workers
cfg.weight = args.weight
cfg.inference.val_list_path = args.val_list_path and Path(args.val_list_path)
cfg.save_path = Path("models") / cfg.config_name
cfg.predict_dataset = args.predict_dataset
cfg.final = args.final
cfg.inference.num_tta = args.num_repetitions
cfg.reproduce = args.reproduce
cfg.out_path = args.out_path and Path(args.out_path)
cfg.data_config = None
cfg.phase = "inference"
|