Spaces:
Runtime error
title: Swahili Text Embeddings Leaderboard
emoji: ⚡
colorFrom: purple
colorTo: green
sdk: streamlit
sdk_version: 1.36.0
app_file: app.py
pinned: false
license: apache-2.0
\n# 🏆 Swahili Text Embeddings Leaderboard (STEL)
Welcome to the Swahili Text Embeddings Leaderboard (STEL)! This is a Sartify LLC project aimed at creating a centralized leaderboard for Swahili text embeddings. The models listed here are evaluated using various Swahili text datasets available at MTEB benchmarks. Contributions and corrections are always welcome! We define a model as "open" if it can be locally deployed and used commercially.
Table of Contents
🌐 Interactive Dashboard
Explore our interactive dashboards:
📊 Leaderboard
Model Name | Publisher | Open? | Basemodel | Matryoshka | Dimension | Average | AfriSentiClassification | AfriSentiLangClassification | MasakhaNEWSClassification | MassiveIntentClassification | MassiveScenarioClassification | SwahiliNewsClassification | NTREXBitextMining | MasakhaNEWSClusteringP2P | MasakhaNEWSClusteringS2S | XNLI | MIRACLReranking | MIRACLRetrieval |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MultiLinguSwahili-serengeti-E250-nli-matryoshka | sartifyllc | Yes | serengeti-E250 | Yes | 768 | 51.3997 | 45.4011 | 77.6318 | 71.4496 | 56.4492 | 61.2038 | 63.9453 | 63.4926 | 38.6383 | 32.6575 | 77.0157 | 19.287 | 9.624 |
MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka | sartifyllc | Yes | bert-base-sw-cased | Yes | 768 | 42.2575 | 35.4278 | 82.2461 | 64.8529 | 46.1332 | 50.5649 | 57.041 | 5.16086 | 37.6302 | 19.7916 | 68.5115 | 22.57 | 17.16 |
MultiLinguSwahili-mxbai-embed-large-v1-nli-matryoshka | sartifyllc | Yes | mxbai-embed-large-v1 | Yes | 768 | 40.0694 | 36.7914 | 81.9434 | 54.2647 | 46.7182 | 51.2206 | 57.2949 | 5.4534 | 34.5571 | 9.27166 | 70.311 | 21.831 | 11.176 |
mxbai-embed-large-v1 | mixedbread-ai | Yes | mxbai-embed-large-v1 | N/A | N/A | 39.6734 | 35.0802 | 83.4229 | 57.416 | 43.8635 | 47.1923 | 54.4678 | 5.87399 | 27.5669 | 21.1763 | 56.0497 | 23.742 | 20.229 |
bert-base-uncased-swahili | flax-community | Yes | bert-base-uncased-swahili | N/A | N/A | 37.8727 | 41.123 | 80.8838 | 66.0714 | 48.302 | 51.9334 | 64.2236 | 0.400601 | 18.6071 | 2.04101 | 58.9762 | 13.807 | 8.103 |
MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka | sartifyllc | Yes | bge-small-en-v1.5 | Yes | 256 | 36.3029 | 35.107 | 67.3486 | 54.1597 | 38.0027 | 46.8393 | 51.2305 | 5.01061 | 21.7986 | 17.8461 | 62.3059 | 21.521 | 14.465 |
bert-base-sw-cased | Geotrend | Yes | bert-base-sw-cased | N/A | N/A | 33.6552 | 35.3342 | 84.3066 | 62.3109 | 36.3685 | 38.7996 | 57.9199 | 0.396624 | 12.9566 | 6.77267 | 55.6602 | 10.077 | 2.959 |
UBC-NLPserengeti-E250 | UCB | Yes | UBC-NLPserengeti-E250 | N/A | N/A | 33.581 | 44.0374 | 84.3848 | 42.1008 | 37.1957 | 38.2414 | 58.1592 | 12.7676 | 15.7357 | 14.7948 | 53.3967 | 2.041 | 0.117 |
🧪 Evaluation
To evaluate a model on the Swahili Embeddings Text Benchmark, you can use the following Python script:
pip install mteb
pip install sentence-transformers
import mteb
from sentence_transformers import SentenceTransformer
models = ["sartifyllc/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka"]
for model_name in models:
truncate_dim = 768
language = "swa"
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") # if cuda available
# model = SentenceTransformer(model_name, truncate_dim = truncate_dim, device = device, trust_remote_code=True) # if you want to use matryoshka n dimension
model = SentenceTransformer(model_name, device = device, trust_remote_code=True)
tasks = [
mteb.get_task("AfriSentiClassification", languages = ["swa"]),
mteb.get_task("AfriSentiLangClassification", languages = ["swa"]),
# "LanguageClassification": "accuracy",
mteb.get_task("MasakhaNEWSClassification", languages = ["swa"]),
mteb.get_task("MassiveIntentClassification", languages = ["swa"]),
mteb.get_task("MassiveScenarioClassification", languages = ["swa"]),
mteb.get_task("SwahiliNewsClassification", languages = ["swa"]),
# mteb.get_tasks(task_types=["PairClassification", "Reranking", "BitextMining", "Clustering", "Retrieval"], languages = ["swa"]),
]
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(model, output_folder=f"{model_name}")
# results = evaluation.run(model, output_folder=f"{model_name}")
tasks = mteb.get_tasks(task_types=["PairClassification", "Reranking", "BitextMining", "Clustering", "Retrieval"], languages = ["swa"])
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(model, output_folder=f"{model_name}")
🤝 How to Contribute
We welcome and appreciate all contributions! You can help by:
Table Work
- Filling in missing entries.
- New models are added as new rows to the leaderboard (maintaining descending order).
- Add new benchmarks as new columns in the leaderboard and include them in the benchmarks table (maintaining descending order).
Code Work
- Improving the existing code.
- Requesting and implementing new features.
🤝 Sponsorship
This Swahili-based benchmark benefits greatly from continued efforts in translating and curating more tasks into Swahili. Contributions and sponsorships are appreciated as they help drive this initiative forward. Your support will enhance translation efforts, bridge language barriers, and make the benchmark more accessible to a broader audience. We extend our heartfelt thanks to AI4DLab & Sartify LLC for their invaluable support and dedication to advancing language technologies. Together, we can further elevate the impact of this project.
Thank you for being part of this effort to advance Swahili language technologies!