Spaces:
Runtime error
Runtime error
File size: 5,636 Bytes
bda7c4e 6b2b26c bda7c4e 1c32a9e bda7c4e 6b2b26c bda7c4e 6b2b26c bda7c4e 1c32a9e 6b2b26c bda7c4e 6b2b26c 1c32a9e bda7c4e 1c32a9e bda7c4e 1c32a9e bda7c4e 6b2b26c bda7c4e 6b2b26c bda7c4e 6b2b26c 1c32a9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import streamlit as st
import pandas as pd
import io
import re
# Constants
GITHUB_URL = "https://github.com/Sartify/STEL"
POSSIBLE_NON_BENCHMARK_COLS = ["Open?", "Publisher", "Basemodel", "Matryoshka", "Dimension", "Model Name"]
def extract_table_from_markdown(markdown_text, table_start):
"""Extract table content from markdown text."""
lines = markdown_text.split('\n')
table_content = []
capture = False
for line in lines:
if line.startswith(table_start):
capture = True
continue
if capture and line.strip() == '':
break
if capture:
table_content.append(line)
return '\n'.join(table_content)
def markdown_table_to_df(table_content):
"""Convert markdown table to pandas DataFrame."""
df = pd.read_csv(io.StringIO(table_content), sep='|', skipinitialspace=True)
df.columns = df.columns.str.strip()
df = df.applymap(lambda x: x.strip() if isinstance(x, str) else x)
df = df.dropna(axis=1, how='all')
return df
def setup_page():
"""Set up the Streamlit page."""
st.set_page_config(page_title="Swahili Text Embeddings Leaderboard", page_icon="⚡", layout="wide")
st.title("⚡ Swahili Text Embeddings Leaderboard (STEL)")
st.image("https://raw.githubusercontent.com/username/repo/main/STEL.jpg", width=300)
def display_leaderboard(df):
"""Display the leaderboard."""
st.header("📊 Leaderboard")
# Determine which non-benchmark columns are present
present_non_benchmark_cols = [col for col in POSSIBLE_NON_BENCHMARK_COLS if col in df.columns]
# Add filters
columns_to_filter = [col for col in df.columns if col not in present_non_benchmark_cols]
selected_columns = st.multiselect("Select benchmarks to display:", columns_to_filter, default=columns_to_filter)
# Filter dataframe
df_display = df[present_non_benchmark_cols + selected_columns]
# Display dataframe
st.dataframe(df_display)
# Download buttons
csv = df_display.to_csv(index=False)
st.download_button(label="Download as CSV", data=csv, file_name="leaderboard.csv", mime="text/csv")
def display_evaluation():
"""Display the evaluation section."""
st.header("🧪 Evaluation")
st.markdown("""
To evaluate a model on the Swahili Embeddings Text Benchmark, you can use the following Python script:
```python
pip install mteb
pip install sentence-transformers
import mteb
from sentence_transformers import SentenceTransformer
models = ["sartifyllc/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka"]
for model_name in models:
truncate_dim = 768
language = "swa"
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
model = SentenceTransformer(model_name, device=device, trust_remote_code=True)
tasks = [
mteb.get_task("AfriSentiClassification", languages=["swa"]),
mteb.get_task("AfriSentiLangClassification", languages=["swa"]),
mteb.get_task("MasakhaNEWSClassification", languages=["swa"]),
mteb.get_task("MassiveIntentClassification", languages=["swa"]),
mteb.get_task("MassiveScenarioClassification", languages=["swa"]),
mteb.get_task("SwahiliNewsClassification", languages=["swa"]),
]
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(model, output_folder=f"{model_name}")
tasks = mteb.get_tasks(task_types=["PairClassification", "Reranking", "BitextMining", "Clustering", "Retrieval"], languages=["swa"])
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(model, output_folder=f"{model_name}")
```
""")
def display_contribution():
"""Display the contribution section."""
st.header("🤝 How to Contribute")
st.markdown("""
We welcome and appreciate all contributions! You can help by:
### Table Work
- Filling in missing entries.
- New models are added as new rows to the leaderboard (maintaining descending order).
- Add new benchmarks as new columns in the leaderboard and include them in the benchmarks table (maintaining descending order).
### Code Work
- Improving the existing code.
- Requesting and implementing new features.
""")
def display_sponsorship():
"""Display the sponsorship section."""
st.header("🤝 Sponsorship")
st.markdown("""
This benchmark is Swahili-based, and we need support translating and curating more tasks into Swahili.
Sponsorships are welcome to help advance this endeavour. Your sponsorship will facilitate essential
translation efforts, bridge language barriers, and make the benchmark accessible to a broader audience.
We are grateful for the dedication shown by our collaborators and aim to extend this impact further
with the support of sponsors committed to advancing language technologies.
""")
def main():
setup_page()
# Read README content
with open("README.md", "r") as f:
readme_content = f.read()
# Extract and process leaderboard table
leaderboard_table = extract_table_from_markdown(readme_content, "| Model Name")
df_leaderboard = markdown_table_to_df(leaderboard_table)
display_leaderboard(df_leaderboard)
display_evaluation()
display_contribution()
display_sponsorship()
st.markdown("---")
st.markdown("Thank you for being part of this effort to advance Swahili language technologies!")
if __name__ == "__main__":
main()
|