Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,334 +1,145 @@
|
|
|
|
|
|
1 |
import io
|
2 |
import re
|
3 |
-
from collections.abc import Iterable
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
import streamlit as st
|
7 |
-
from pandas.api.types import is_bool_dtype, is_datetime64_any_dtype, is_numeric_dtype
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
def
|
14 |
-
"""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
df.columns = df.columns.str.strip()
|
32 |
-
df
|
33 |
-
df
|
34 |
-
|
35 |
-
return df
|
36 |
-
|
37 |
-
|
38 |
-
def extract_markdown_table_from_multiline(multiline: str, table_headline: str, next_headline_start: str = "#") -> str:
|
39 |
-
"""Extracts the markdown table from a multiline string.
|
40 |
-
Args:
|
41 |
-
multiline (str): content of README.md file.
|
42 |
-
table_headline (str): Headline of the table in the README.md file.
|
43 |
-
next_headline_start (str, optional): Start of the next headline. Defaults to "#".
|
44 |
-
Returns:
|
45 |
-
str: Markdown table.
|
46 |
-
Raises:
|
47 |
-
ValueError: If the table could not be found.
|
48 |
-
"""
|
49 |
-
# extract everything between the table headline and the next headline
|
50 |
-
table = []
|
51 |
-
start = False
|
52 |
-
for line in multiline.split("\n"):
|
53 |
-
if line.startswith(table_headline):
|
54 |
-
start = True
|
55 |
-
elif line.startswith(next_headline_start):
|
56 |
-
start = False
|
57 |
-
elif start:
|
58 |
-
table.append(line + "\n")
|
59 |
-
|
60 |
-
if len(table) == 0:
|
61 |
-
raise ValueError(f"Could not find table with headline '{table_headline}'")
|
62 |
-
|
63 |
-
return "".join(table)
|
64 |
-
|
65 |
-
|
66 |
-
def remove_markdown_links(text: str) -> str:
|
67 |
-
"""Modifies a markdown text to remove all markdown links.
|
68 |
-
Example: [DISPLAY](LINK) to DISPLAY
|
69 |
-
First find all markdown links with regex.
|
70 |
-
Then replace them with: $1
|
71 |
-
Args:
|
72 |
-
text (str): Markdown text containing markdown links
|
73 |
-
Returns:
|
74 |
-
str: Markdown text without markdown links.
|
75 |
-
"""
|
76 |
-
|
77 |
-
# find all markdown links
|
78 |
-
markdown_links = re.findall(r"\[([^\]]+)\]\(([^)]+)\)", text)
|
79 |
-
|
80 |
-
# remove link keep display text
|
81 |
-
for display, link in markdown_links:
|
82 |
-
text = text.replace(f"[{display}]({link})", display)
|
83 |
-
|
84 |
-
return text
|
85 |
-
|
86 |
-
|
87 |
-
def filter_dataframe_by_row_and_columns(df: pd.DataFrame, ignore_columns: list[str] | None = None) -> pd.DataFrame:
|
88 |
-
"""
|
89 |
-
Filter dataframe by the rows and columns to display.
|
90 |
-
This does not select based on the values in the dataframe, but rather on the index and columns.
|
91 |
-
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
|
92 |
-
Args:
|
93 |
-
df (pd.DataFrame): Original dataframe
|
94 |
-
ignore_columns (list[str], optional): Columns to ignore. Defaults to None.
|
95 |
-
Returns:
|
96 |
-
pd.DataFrame: Filtered dataframe
|
97 |
-
"""
|
98 |
-
df = df.copy()
|
99 |
-
|
100 |
-
if ignore_columns is None:
|
101 |
-
ignore_columns = []
|
102 |
-
|
103 |
-
modification_container = st.container()
|
104 |
-
|
105 |
-
with modification_container:
|
106 |
-
to_filter_index = st.multiselect("Filter by model:", sorted(df.index))
|
107 |
-
if to_filter_index:
|
108 |
-
df = pd.DataFrame(df.loc[to_filter_index])
|
109 |
-
|
110 |
-
to_filter_columns = st.multiselect(
|
111 |
-
"Filter by benchmark:", sorted([c for c in df.columns if c not in ignore_columns])
|
112 |
-
)
|
113 |
-
if to_filter_columns:
|
114 |
-
df = pd.DataFrame(df[ignore_columns + to_filter_columns])
|
115 |
-
|
116 |
return df
|
117 |
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
def
|
120 |
-
"""
|
121 |
-
|
122 |
-
Modified from https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/
|
123 |
-
Args:
|
124 |
-
df (pd.DataFrame): Original dataframe
|
125 |
-
Returns:
|
126 |
-
pd.DataFrame: Filtered dataframe
|
127 |
-
"""
|
128 |
-
df = df.copy()
|
129 |
-
|
130 |
-
modification_container = st.container()
|
131 |
-
|
132 |
-
with modification_container:
|
133 |
-
to_filter_columns = st.multiselect("Filter results on:", df.columns)
|
134 |
-
left, right = st.columns((1, 20))
|
135 |
-
|
136 |
-
for column in to_filter_columns:
|
137 |
-
if is_bool_dtype(df[column]):
|
138 |
-
user_bool_input = right.checkbox(f"{column}", value=True)
|
139 |
-
df = df[df[column] == user_bool_input]
|
140 |
-
|
141 |
-
elif is_numeric_dtype(df[column]):
|
142 |
-
_min = float(df[column].min())
|
143 |
-
_max = float(df[column].max())
|
144 |
-
|
145 |
-
if (_min != _max) and pd.notna(_min) and pd.notna(_max):
|
146 |
-
step = 0.01
|
147 |
-
user_num_input = right.slider(
|
148 |
-
f"Values for {column}:",
|
149 |
-
min_value=round(_min - step, 2),
|
150 |
-
max_value=round(_max + step, 2),
|
151 |
-
value=(_min, _max),
|
152 |
-
step=step,
|
153 |
-
)
|
154 |
-
df = df[df[column].between(*user_num_input)]
|
155 |
-
|
156 |
-
elif is_datetime64_any_dtype(df[column]):
|
157 |
-
user_date_input = right.date_input(
|
158 |
-
f"Values for {column}:",
|
159 |
-
value=(
|
160 |
-
df[column].min(),
|
161 |
-
df[column].max(),
|
162 |
-
),
|
163 |
-
)
|
164 |
-
if isinstance(user_date_input, Iterable) and len(user_date_input) == 2:
|
165 |
-
user_date_input_datetime = tuple(map(pd.to_datetime, user_date_input))
|
166 |
-
start_date, end_date = user_date_input_datetime
|
167 |
-
df = df.loc[df[column].between(start_date, end_date)]
|
168 |
-
|
169 |
-
else:
|
170 |
-
selected_values = right.multiselect(
|
171 |
-
f"Values for {column}:",
|
172 |
-
sorted(df[column].unique()),
|
173 |
-
)
|
174 |
-
|
175 |
-
if selected_values:
|
176 |
-
df = df[df[column].isin(selected_values)]
|
177 |
-
|
178 |
-
return df
|
179 |
-
|
180 |
-
|
181 |
-
def setup_basic():
|
182 |
-
title = "🏆 LLM-Leaderboard"
|
183 |
-
|
184 |
-
st.set_page_config(
|
185 |
-
page_title=title,
|
186 |
-
page_icon="🏆",
|
187 |
-
layout="wide",
|
188 |
-
)
|
189 |
-
st.title(title)
|
190 |
-
|
191 |
-
st.markdown(
|
192 |
-
"A joint community effort to create one central leaderboard for LLMs."
|
193 |
-
f" Visit [swahili-llm-leaderboard]({GITHUB_URL}) to contribute. \n"
|
194 |
-
'We refer to a model being "open" if it can be locally deployed and used for commercial purposes.'
|
195 |
-
)
|
196 |
-
|
197 |
-
|
198 |
-
def setup_leaderboard(readme: str):
|
199 |
-
leaderboard_table = extract_markdown_table_from_multiline(readme, table_headline="## Leaderboard")
|
200 |
-
leaderboard_table = remove_markdown_links(leaderboard_table)
|
201 |
-
df_leaderboard = extract_table_and_format_from_markdown_text(leaderboard_table)
|
202 |
-
df_leaderboard["Open?"] = df_leaderboard["Open?"].map({"yes": 1, "no": 0}).astype(bool)
|
203 |
-
|
204 |
-
st.markdown("## Leaderboard")
|
205 |
-
modify = st.checkbox("Add filters")
|
206 |
-
clear_empty_entries = st.checkbox("Clear empty entries", value=True)
|
207 |
-
|
208 |
-
if modify:
|
209 |
-
df_leaderboard = filter_dataframe_by_row_and_columns(df_leaderboard, ignore_columns=NON_BENCHMARK_COLS)
|
210 |
-
df_leaderboard = filter_dataframe_by_column_values(df_leaderboard)
|
211 |
-
|
212 |
-
if clear_empty_entries:
|
213 |
-
df_leaderboard = df_leaderboard.dropna(axis=1, how="all")
|
214 |
-
benchmark_columns = [c for c in df_leaderboard.columns if df_leaderboard[c].dtype == float]
|
215 |
-
rows_wo_any_benchmark = df_leaderboard[benchmark_columns].isna().all(axis=1)
|
216 |
-
df_leaderboard = df_leaderboard[~rows_wo_any_benchmark]
|
217 |
-
|
218 |
-
st.dataframe(df_leaderboard)
|
219 |
-
|
220 |
-
st.download_button(
|
221 |
-
"Download current selection as .html",
|
222 |
-
df_leaderboard.to_html().encode("utf-8"),
|
223 |
-
"leaderboard.html",
|
224 |
-
"text/html",
|
225 |
-
key="download-html",
|
226 |
-
)
|
227 |
-
|
228 |
-
st.download_button(
|
229 |
-
"Download current selection as .csv",
|
230 |
-
df_leaderboard.to_csv().encode("utf-8"),
|
231 |
-
"leaderboard.csv",
|
232 |
-
"text/csv",
|
233 |
-
key="download-csv",
|
234 |
-
)
|
235 |
-
|
236 |
-
|
237 |
-
def setup_benchmarks(readme: str):
|
238 |
-
benchmarks_table = extract_markdown_table_from_multiline(readme, table_headline="## Benchmarks")
|
239 |
-
df_benchmarks = extract_table_and_format_from_markdown_text(benchmarks_table)
|
240 |
-
|
241 |
-
st.markdown("## Covered Benchmarks")
|
242 |
-
|
243 |
-
selected_benchmark = st.selectbox("Select a benchmark to learn more:", df_benchmarks.index.unique())
|
244 |
-
df_selected = df_benchmarks.loc[selected_benchmark]
|
245 |
-
text = [
|
246 |
-
f"Name: {selected_benchmark}",
|
247 |
-
]
|
248 |
-
for key in df_selected.keys():
|
249 |
-
text.append(f"{key}: {df_selected[key]} ")
|
250 |
-
st.markdown(" \n".join(text))
|
251 |
-
|
252 |
-
|
253 |
-
def setup_sources():
|
254 |
-
st.markdown("## Sources")
|
255 |
-
st.markdown(
|
256 |
-
"The results of this leaderboard are collected from the individual papers and published results of the model "
|
257 |
-
"authors. If you are interested in the sources of each individual reported model value, please visit the "
|
258 |
-
f"[llm-leaderboard]({GITHUB_URL}) repository."
|
259 |
-
)
|
260 |
-
st.markdown(
|
261 |
-
"""
|
262 |
-
Special thanks to the following pages:
|
263 |
-
- [MosaicML - Model benchmarks](https://www.mosaicml.com/blog/mpt-7b)
|
264 |
-
- [lmsys.org - Chatbot Arena benchmarks](https://lmsys.org/blog/2023-05-03-arena/)
|
265 |
-
- [Papers With Code](https://paperswithcode.com/)
|
266 |
-
- [Stanford HELM](https://crfm.stanford.edu/helm/latest/)
|
267 |
-
- [HF Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
268 |
-
"""
|
269 |
-
)
|
270 |
-
|
271 |
-
def setup_Contribution():
|
272 |
-
st.markdown("## How to Contribute")
|
273 |
-
|
274 |
-
markdown_content = """
|
275 |
-
- Model name (don't forget the links):
|
276 |
-
- Filling in missing entries
|
277 |
-
- Adding a new model as a new row to the leaderboard. Please keep the descending order.
|
278 |
-
- Adding a new benchmark as a new column in the leaderboard and adding the benchmark to the benchmarks table. Please keep the descending order.
|
279 |
-
- Code work:
|
280 |
-
- Improving the existing code
|
281 |
-
- Requesting and implementing new features
|
282 |
-
"""
|
283 |
-
st.markdown(markdown_content)
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
st.
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
)
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
st.
|
302 |
-
st.markdown(
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
def main():
|
318 |
-
|
319 |
-
|
|
|
320 |
with open("README.md", "r") as f:
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
|
|
|
|
332 |
|
333 |
if __name__ == "__main__":
|
334 |
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
import io
|
4 |
import re
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Constants
|
7 |
+
GITHUB_URL = "https://github.com/Sartify/STEL"
|
8 |
+
NON_BENCHMARK_COLS = ["Open?", "Publisher", "Basemodel", "Matryoshka", "Dimension"]
|
9 |
+
|
10 |
+
def extract_table_from_markdown(markdown_text, table_start):
|
11 |
+
"""Extract table content from markdown text."""
|
12 |
+
lines = markdown_text.split('\n')
|
13 |
+
table_content = []
|
14 |
+
capture = False
|
15 |
+
for line in lines:
|
16 |
+
if line.startswith(table_start):
|
17 |
+
capture = True
|
18 |
+
continue
|
19 |
+
if capture and line.strip() == '':
|
20 |
+
break
|
21 |
+
if capture:
|
22 |
+
table_content.append(line)
|
23 |
+
return '\n'.join(table_content)
|
24 |
+
|
25 |
+
def markdown_table_to_df(table_content):
|
26 |
+
"""Convert markdown table to pandas DataFrame."""
|
27 |
+
df = pd.read_csv(io.StringIO(table_content), sep='|', skipinitialspace=True)
|
28 |
df.columns = df.columns.str.strip()
|
29 |
+
df = df.applymap(lambda x: x.strip() if isinstance(x, str) else x)
|
30 |
+
df = df.dropna(axis=1, how='all')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return df
|
32 |
|
33 |
+
def setup_page():
|
34 |
+
"""Set up the Streamlit page."""
|
35 |
+
st.set_page_config(page_title="Swahili Text Embeddings Leaderboard", page_icon="⚡", layout="wide")
|
36 |
+
st.title("⚡ Swahili Text Embeddings Leaderboard (STEL)")
|
37 |
+
st.image("STEL.jpg", width=300)
|
38 |
|
39 |
+
def display_leaderboard(df):
|
40 |
+
"""Display the leaderboard."""
|
41 |
+
st.header("📊 Leaderboard")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Add filters
|
44 |
+
columns_to_filter = [col for col in df.columns if col not in NON_BENCHMARK_COLS]
|
45 |
+
selected_columns = st.multiselect("Select benchmarks to display:", columns_to_filter, default=columns_to_filter)
|
46 |
+
|
47 |
+
# Filter dataframe
|
48 |
+
df_display = df[NON_BENCHMARK_COLS + selected_columns]
|
49 |
+
|
50 |
+
# Display dataframe
|
51 |
+
st.dataframe(df_display)
|
52 |
+
|
53 |
+
# Download buttons
|
54 |
+
csv = df_display.to_csv(index=False)
|
55 |
+
st.download_button(label="Download as CSV", data=csv, file_name="leaderboard.csv", mime="text/csv")
|
56 |
+
|
57 |
+
def display_evaluation():
|
58 |
+
"""Display the evaluation section."""
|
59 |
+
st.header("🧪 Evaluation")
|
60 |
+
st.markdown("""
|
61 |
+
To evaluate a model on the Swahili Embeddings Text Benchmark, you can use the following Python script:
|
62 |
+
```python
|
63 |
+
pip install mteb
|
64 |
+
pip install sentence-transformers
|
65 |
+
import mteb
|
66 |
+
from sentence_transformers import SentenceTransformer
|
67 |
+
|
68 |
+
models = ["sartifyllc/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka"]
|
69 |
+
|
70 |
+
for model_name in models:
|
71 |
+
truncate_dim = 768
|
72 |
+
language = "swa"
|
73 |
+
|
74 |
+
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
75 |
+
model = SentenceTransformer(model_name, device=device, trust_remote_code=True)
|
76 |
+
|
77 |
+
tasks = [
|
78 |
+
mteb.get_task("AfriSentiClassification", languages=["swa"]),
|
79 |
+
mteb.get_task("AfriSentiLangClassification", languages=["swa"]),
|
80 |
+
mteb.get_task("MasakhaNEWSClassification", languages=["swa"]),
|
81 |
+
mteb.get_task("MassiveIntentClassification", languages=["swa"]),
|
82 |
+
mteb.get_task("MassiveScenarioClassification", languages=["swa"]),
|
83 |
+
mteb.get_task("SwahiliNewsClassification", languages=["swa"]),
|
84 |
+
]
|
85 |
+
|
86 |
+
evaluation = mteb.MTEB(tasks=tasks)
|
87 |
+
results = evaluation.run(model, output_folder=f"{model_name}")
|
88 |
+
|
89 |
+
tasks = mteb.get_tasks(task_types=["PairClassification", "Reranking", "BitextMining", "Clustering", "Retrieval"], languages=["swa"])
|
90 |
+
|
91 |
+
evaluation = mteb.MTEB(tasks=tasks)
|
92 |
+
results = evaluation.run(model, output_folder=f"{model_name}")
|
93 |
+
```
|
94 |
+
""")
|
95 |
+
|
96 |
+
def display_contribution():
|
97 |
+
"""Display the contribution section."""
|
98 |
+
st.header("🤝 How to Contribute")
|
99 |
+
st.markdown("""
|
100 |
+
We welcome and appreciate all contributions! You can help by:
|
101 |
+
|
102 |
+
### Table Work
|
103 |
+
|
104 |
+
- Filling in missing entries.
|
105 |
+
- New models are added as new rows to the leaderboard (maintaining descending order).
|
106 |
+
- Add new benchmarks as new columns in the leaderboard and include them in the benchmarks table (maintaining descending order).
|
107 |
+
|
108 |
+
### Code Work
|
109 |
+
|
110 |
+
- Improving the existing code.
|
111 |
+
- Requesting and implementing new features.
|
112 |
+
""")
|
113 |
+
|
114 |
+
def display_sponsorship():
|
115 |
+
"""Display the sponsorship section."""
|
116 |
+
st.header("🤝 Sponsorship")
|
117 |
+
st.markdown("""
|
118 |
+
This benchmark is Swahili-based, and we need support translating and curating more tasks into Swahili.
|
119 |
+
Sponsorships are welcome to help advance this endeavour. Your sponsorship will facilitate essential
|
120 |
+
translation efforts, bridge language barriers, and make the benchmark accessible to a broader audience.
|
121 |
+
We are grateful for the dedication shown by our collaborators and aim to extend this impact further
|
122 |
+
with the support of sponsors committed to advancing language technologies.
|
123 |
+
""")
|
124 |
|
125 |
def main():
|
126 |
+
setup_page()
|
127 |
+
|
128 |
+
# Read README content
|
129 |
with open("README.md", "r") as f:
|
130 |
+
readme_content = f.read()
|
131 |
+
|
132 |
+
# Extract and process leaderboard table
|
133 |
+
leaderboard_table = extract_table_from_markdown(readme_content, "| Model Name")
|
134 |
+
df_leaderboard = markdown_table_to_df(leaderboard_table)
|
135 |
+
|
136 |
+
display_leaderboard(df_leaderboard)
|
137 |
+
display_evaluation()
|
138 |
+
display_contribution()
|
139 |
+
display_sponsorship()
|
140 |
+
|
141 |
+
st.markdown("---")
|
142 |
+
st.markdown("Thank you for being part of this effort to advance Swahili language technologies!")
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
main()
|