PuLiD-Flux / pulidflux.py
sanjayxm's picture
Upload pulidflux.py
757ccb1 verified
import torch
from torch import nn, Tensor
from torchvision import transforms
from torchvision.transforms import functional
import os
import logging
import folder_paths
import comfy.utils
from comfy.ldm.flux.layers import timestep_embedding
from insightface.app import FaceAnalysis
from facexlib.parsing import init_parsing_model
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .encoders_flux import IDFormer, PerceiverAttentionCA
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid")
if "pulid" not in folder_paths.folder_names_and_paths:
current_paths = [MODELS_DIR]
else:
current_paths, _ = folder_paths.folder_names_and_paths["pulid"]
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions)
class PulidFluxModel(nn.Module):
def __init__(self):
super().__init__()
self.double_interval = 2
self.single_interval = 4
# Init encoder
self.pulid_encoder = IDFormer()
# Init attention
num_ca = 19 // self.double_interval + 38 // self.single_interval
if 19 % self.double_interval != 0:
num_ca += 1
if 38 % self.single_interval != 0:
num_ca += 1
self.pulid_ca = nn.ModuleList([
PerceiverAttentionCA() for _ in range(num_ca)
])
def from_pretrained(self, path: str):
state_dict = comfy.utils.load_torch_file(path, safe_load=True)
state_dict_dict = {}
for k, v in state_dict.items():
module = k.split('.')[0]
state_dict_dict.setdefault(module, {})
new_k = k[len(module) + 1:]
state_dict_dict[module][new_k] = v
for module in state_dict_dict:
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
del state_dict
del state_dict_dict
def get_embeds(self, face_embed, clip_embeds):
return self.pulid_encoder(face_embed, clip_embeds)
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor = None,
control=None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
ca_idx = 0
for i, block in enumerate(self.double_blocks):
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
# PuLID attention
if self.pulid_data:
if i % self.pulid_double_interval == 0:
# Will calculate influence of all pulid nodes at once
for _, node_data in self.pulid_data.items():
if torch.any((node_data['sigma_start'] >= timesteps) & (timesteps >= node_data['sigma_end'])):
img = img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], img)
ca_idx += 1
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
img = block(img, vec=vec, pe=pe)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
# PuLID attention
if self.pulid_data:
real_img, txt = img[:, txt.shape[1]:, ...], img[:, :txt.shape[1], ...]
if i % self.pulid_single_interval == 0:
# Will calculate influence of all nodes at once
for _, node_data in self.pulid_data.items():
if torch.any((node_data['sigma_start'] >= timesteps) & (timesteps >= node_data['sigma_end'])):
real_img = real_img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], real_img)
ca_idx += 1
img = torch.cat((txt, real_img), 1)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def tensor_to_image(tensor):
image = tensor.mul(255).clamp(0, 255).byte().cpu()
image = image[..., [2, 1, 0]].numpy()
return image
def image_to_tensor(image):
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
tensor = tensor[..., [2, 1, 0]]
return tensor
def to_gray(img):
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
x = x.repeat(1, 3, 1, 1)
return x
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Nodes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class PulidFluxModelLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": {"pulid_file": (folder_paths.get_filename_list("pulid"), )}}
RETURN_TYPES = ("PULIDFLUX",)
FUNCTION = "load_model"
CATEGORY = "pulid"
def load_model(self, pulid_file):
model_path = folder_paths.get_full_path("pulid", pulid_file)
# Also initialize the model, takes longer to load but then it doesn't have to be done every time you change parameters in the apply node
model = PulidFluxModel()
logging.info("Loading PuLID-Flux model.")
model.from_pretrained(path=model_path)
return (model,)
class PulidFluxInsightFaceLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"provider": (["CPU", "CUDA", "ROCM"], ),
},
}
RETURN_TYPES = ("FACEANALYSIS",)
FUNCTION = "load_insightface"
CATEGORY = "pulid"
def load_insightface(self, provider):
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l
model.prepare(ctx_id=0, det_size=(640, 640))
return (model,)
class PulidFluxEvaClipLoader:
@classmethod
def INPUT_TYPES(s):
return {
"required": {},
}
RETURN_TYPES = ("EVA_CLIP",)
FUNCTION = "load_eva_clip"
CATEGORY = "pulid"
def load_eva_clip(self):
from .eva_clip.factory import create_model_and_transforms
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
model = model.visual
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN)
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD)
if not isinstance(eva_transform_mean, (list, tuple)):
model["image_mean"] = (eva_transform_mean,) * 3
if not isinstance(eva_transform_std, (list, tuple)):
model["image_std"] = (eva_transform_std,) * 3
return (model,)
class ApplyPulidFlux:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL", ),
"pulid_flux": ("PULIDFLUX", ),
"eva_clip": ("EVA_CLIP", ),
"face_analysis": ("FACEANALYSIS", ),
"image": ("IMAGE", ),
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
},
"optional": {
"attn_mask": ("MASK", ),
},
"hidden": {
"unique_id": "UNIQUE_ID"
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_pulid_flux"
CATEGORY = "pulid"
def __init__(self):
self.pulid_data_dict = None
def apply_pulid_flux(self, model, pulid_flux, eva_clip, face_analysis, image, weight, start_at, end_at, attn_mask=None, unique_id=None):
device = comfy.model_management.get_torch_device()
# Why should I care what args say, when the unet model has a different dtype?!
# Am I missing something?!
#dtype = comfy.model_management.unet_dtype()
dtype = model.model.diffusion_model.dtype
# Because of 8bit models we must check what cast type does the unet uses
# ZLUDA (Intel, AMD) & GPUs with compute capability < 8.0 don't support bfloat16 etc.
# Issue: https://github.com/balazik/ComfyUI-PuLID-Flux/issues/6
if model.model.manual_cast_dtype is not None:
dtype = model.model.manual_cast_dtype
eva_clip.to(device, dtype=dtype)
pulid_flux.to(device, dtype=dtype)
# TODO: Add masking support!
if attn_mask is not None:
if attn_mask.dim() > 3:
attn_mask = attn_mask.squeeze(-1)
elif attn_mask.dim() < 3:
attn_mask = attn_mask.unsqueeze(0)
attn_mask = attn_mask.to(device, dtype=dtype)
image = tensor_to_image(image)
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
face_helper.face_parse = None
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
cond = []
# Analyse multiple images at multiple sizes and combine largest area embeddings
for i in range(image.shape[0]):
# get insightface embeddings
iface_embeds = None
for size in [(size, size) for size in range(640, 256, -64)]:
face_analysis.det_model.input_size = size
face_info = face_analysis.get(image[i])
if face_info:
# Only use the maximum face
# Removed the reverse=True from original code because we need the largest area not the smallest one!
# Sorts the list in ascending order (smallest to largest),
# then selects the last element, which is the largest face
face_info = sorted(face_info, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
iface_embeds = torch.from_numpy(face_info.embedding).unsqueeze(0).to(device, dtype=dtype)
break
else:
# No face detected, skip this image
logging.warning(f'Warning: No face detected in image {str(i)}')
continue
# get eva_clip embeddings
face_helper.clean_all()
face_helper.read_image(image[i])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
if len(face_helper.cropped_faces) == 0:
# No face detected, skip this image
continue
# Get aligned face image
align_face = face_helper.cropped_faces[0]
# Convert bgr face image to tensor
align_face = image_to_tensor(align_face).unsqueeze(0).permute(0, 3, 1, 2).to(device)
parsing_out = face_helper.face_parse(functional.normalize(align_face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(align_face)
# Only keep the face features
face_features_image = torch.where(bg, white_image, to_gray(align_face))
# Transform img before sending to eva_clip
# Apparently MPS only supports NEAREST interpolation?
face_features_image = functional.resize(face_features_image, eva_clip.image_size, transforms.InterpolationMode.BICUBIC if 'cuda' in device.type else transforms.InterpolationMode.NEAREST).to(device, dtype=dtype)
face_features_image = functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std)
# eva_clip
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False)
id_cond_vit = id_cond_vit.to(device, dtype=dtype)
for idx in range(len(id_vit_hidden)):
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype)
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True))
# Combine embeddings
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1)
# Pulid_encoder
cond.append(pulid_flux.get_embeds(id_cond, id_vit_hidden))
if not cond:
# No faces detected, return the original model
logging.warning("PuLID warning: No faces detected in any of the given images, returning unmodified model.")
return (model,)
# average embeddings
cond = torch.cat(cond).to(device, dtype=dtype)
if cond.shape[0] > 1:
cond = torch.mean(cond, dim=0, keepdim=True)
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
# Patch the Flux model (original diffusion_model)
# Nah, I don't care for the official ModelPatcher because it's undocumented!
# I want the end result now, and I don’t mind if I break other custom nodes in the process. 😄
flux_model = model.model.diffusion_model
# Let's see if we already patched the underlying flux model, if not apply patch
if not hasattr(flux_model, "pulid_ca"):
# Add perceiver attention, variables and current node data (weight, embedding, sigma_start, sigma_end)
# The pulid_data is stored in Dict by unique node index,
# so we can chain multiple ApplyPulidFlux nodes!
flux_model.pulid_ca = pulid_flux.pulid_ca
flux_model.pulid_double_interval = pulid_flux.double_interval
flux_model.pulid_single_interval = pulid_flux.single_interval
flux_model.pulid_data = {}
# Replace model forward_orig with our own
new_method = forward_orig.__get__(flux_model, flux_model.__class__)
setattr(flux_model, 'forward_orig', new_method)
# Patch is already in place, add data (weight, embedding, sigma_start, sigma_end) under unique node index
flux_model.pulid_data[unique_id] = {
'weight': weight,
'embedding': cond,
'sigma_start': sigma_start,
'sigma_end': sigma_end,
}
# Keep a reference for destructor (if node is deleted the data will be deleted as well)
self.pulid_data_dict = {'data': flux_model.pulid_data, 'unique_id': unique_id}
return (model,)
def __del__(self):
# Destroy the data for this node
if self.pulid_data_dict:
del self.pulid_data_dict['data'][self.pulid_data_dict['unique_id']]
del self.pulid_data_dict
NODE_CLASS_MAPPINGS = {
"PulidFluxModelLoader": PulidFluxModelLoader,
"PulidFluxInsightFaceLoader": PulidFluxInsightFaceLoader,
"PulidFluxEvaClipLoader": PulidFluxEvaClipLoader,
"ApplyPulidFlux": ApplyPulidFlux,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PulidFluxModelLoader": "Load PuLID Flux Model",
"PulidFluxInsightFaceLoader": "Load InsightFace (PuLID Flux)",
"PulidFluxEvaClipLoader": "Load Eva Clip (PuLID Flux)",
"ApplyPulidFlux": "Apply PuLID Flux",
}