Spaces:
Runtime error
Runtime error
Upload pulidflux.py
Browse files- pulidflux.py +419 -0
pulidflux.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn, Tensor
|
4 |
+
from torchvision import transforms
|
5 |
+
from torchvision.transforms import functional
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
import folder_paths
|
9 |
+
import comfy.utils
|
10 |
+
from comfy.ldm.flux.layers import timestep_embedding
|
11 |
+
from insightface.app import FaceAnalysis
|
12 |
+
from facexlib.parsing import init_parsing_model
|
13 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
14 |
+
|
15 |
+
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
16 |
+
from .encoders_flux import IDFormer, PerceiverAttentionCA
|
17 |
+
|
18 |
+
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
|
19 |
+
|
20 |
+
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid")
|
21 |
+
if "pulid" not in folder_paths.folder_names_and_paths:
|
22 |
+
current_paths = [MODELS_DIR]
|
23 |
+
else:
|
24 |
+
current_paths, _ = folder_paths.folder_names_and_paths["pulid"]
|
25 |
+
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions)
|
26 |
+
|
27 |
+
class PulidFluxModel(nn.Module):
|
28 |
+
def __init__(self):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.double_interval = 2
|
32 |
+
self.single_interval = 4
|
33 |
+
|
34 |
+
# Init encoder
|
35 |
+
self.pulid_encoder = IDFormer()
|
36 |
+
|
37 |
+
# Init attention
|
38 |
+
num_ca = 19 // self.double_interval + 38 // self.single_interval
|
39 |
+
if 19 % self.double_interval != 0:
|
40 |
+
num_ca += 1
|
41 |
+
if 38 % self.single_interval != 0:
|
42 |
+
num_ca += 1
|
43 |
+
self.pulid_ca = nn.ModuleList([
|
44 |
+
PerceiverAttentionCA() for _ in range(num_ca)
|
45 |
+
])
|
46 |
+
|
47 |
+
def from_pretrained(self, path: str):
|
48 |
+
state_dict = comfy.utils.load_torch_file(path, safe_load=True)
|
49 |
+
state_dict_dict = {}
|
50 |
+
for k, v in state_dict.items():
|
51 |
+
module = k.split('.')[0]
|
52 |
+
state_dict_dict.setdefault(module, {})
|
53 |
+
new_k = k[len(module) + 1:]
|
54 |
+
state_dict_dict[module][new_k] = v
|
55 |
+
|
56 |
+
for module in state_dict_dict:
|
57 |
+
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
|
58 |
+
|
59 |
+
del state_dict
|
60 |
+
del state_dict_dict
|
61 |
+
|
62 |
+
def get_embeds(self, face_embed, clip_embeds):
|
63 |
+
return self.pulid_encoder(face_embed, clip_embeds)
|
64 |
+
|
65 |
+
def forward_orig(
|
66 |
+
self,
|
67 |
+
img: Tensor,
|
68 |
+
img_ids: Tensor,
|
69 |
+
txt: Tensor,
|
70 |
+
txt_ids: Tensor,
|
71 |
+
timesteps: Tensor,
|
72 |
+
y: Tensor,
|
73 |
+
guidance: Tensor = None,
|
74 |
+
control=None,
|
75 |
+
) -> Tensor:
|
76 |
+
if img.ndim != 3 or txt.ndim != 3:
|
77 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
78 |
+
|
79 |
+
# running on sequences img
|
80 |
+
img = self.img_in(img)
|
81 |
+
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
82 |
+
if self.params.guidance_embed:
|
83 |
+
if guidance is None:
|
84 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
85 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
86 |
+
|
87 |
+
vec = vec + self.vector_in(y)
|
88 |
+
txt = self.txt_in(txt)
|
89 |
+
|
90 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
91 |
+
pe = self.pe_embedder(ids)
|
92 |
+
|
93 |
+
ca_idx = 0
|
94 |
+
for i, block in enumerate(self.double_blocks):
|
95 |
+
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
96 |
+
|
97 |
+
if control is not None: # Controlnet
|
98 |
+
control_i = control.get("input")
|
99 |
+
if i < len(control_i):
|
100 |
+
add = control_i[i]
|
101 |
+
if add is not None:
|
102 |
+
img += add
|
103 |
+
|
104 |
+
# PuLID attention
|
105 |
+
if self.pulid_data:
|
106 |
+
if i % self.pulid_double_interval == 0:
|
107 |
+
# Will calculate influence of all pulid nodes at once
|
108 |
+
for _, node_data in self.pulid_data.items():
|
109 |
+
if torch.any((node_data['sigma_start'] >= timesteps) & (timesteps >= node_data['sigma_end'])):
|
110 |
+
img = img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], img)
|
111 |
+
ca_idx += 1
|
112 |
+
|
113 |
+
img = torch.cat((txt, img), 1)
|
114 |
+
|
115 |
+
for i, block in enumerate(self.single_blocks):
|
116 |
+
img = block(img, vec=vec, pe=pe)
|
117 |
+
|
118 |
+
if control is not None: # Controlnet
|
119 |
+
control_o = control.get("output")
|
120 |
+
if i < len(control_o):
|
121 |
+
add = control_o[i]
|
122 |
+
if add is not None:
|
123 |
+
img[:, txt.shape[1] :, ...] += add
|
124 |
+
|
125 |
+
# PuLID attention
|
126 |
+
if self.pulid_data:
|
127 |
+
real_img, txt = img[:, txt.shape[1]:, ...], img[:, :txt.shape[1], ...]
|
128 |
+
if i % self.pulid_single_interval == 0:
|
129 |
+
# Will calculate influence of all nodes at once
|
130 |
+
for _, node_data in self.pulid_data.items():
|
131 |
+
if torch.any((node_data['sigma_start'] >= timesteps) & (timesteps >= node_data['sigma_end'])):
|
132 |
+
real_img = real_img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], real_img)
|
133 |
+
ca_idx += 1
|
134 |
+
img = torch.cat((txt, real_img), 1)
|
135 |
+
|
136 |
+
img = img[:, txt.shape[1] :, ...]
|
137 |
+
|
138 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
139 |
+
return img
|
140 |
+
|
141 |
+
def tensor_to_image(tensor):
|
142 |
+
image = tensor.mul(255).clamp(0, 255).byte().cpu()
|
143 |
+
image = image[..., [2, 1, 0]].numpy()
|
144 |
+
return image
|
145 |
+
|
146 |
+
def image_to_tensor(image):
|
147 |
+
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1)
|
148 |
+
tensor = tensor[..., [2, 1, 0]]
|
149 |
+
return tensor
|
150 |
+
|
151 |
+
def to_gray(img):
|
152 |
+
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
|
153 |
+
x = x.repeat(1, 3, 1, 1)
|
154 |
+
return x
|
155 |
+
|
156 |
+
"""
|
157 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
158 |
+
Nodes
|
159 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
160 |
+
"""
|
161 |
+
|
162 |
+
class PulidFluxModelLoader:
|
163 |
+
@classmethod
|
164 |
+
def INPUT_TYPES(s):
|
165 |
+
return {"required": {"pulid_file": (folder_paths.get_filename_list("pulid"), )}}
|
166 |
+
|
167 |
+
RETURN_TYPES = ("PULIDFLUX",)
|
168 |
+
FUNCTION = "load_model"
|
169 |
+
CATEGORY = "pulid"
|
170 |
+
|
171 |
+
def load_model(self, pulid_file):
|
172 |
+
model_path = folder_paths.get_full_path("pulid", pulid_file)
|
173 |
+
|
174 |
+
# Also initialize the model, takes longer to load but then it doesn't have to be done every time you change parameters in the apply node
|
175 |
+
model = PulidFluxModel()
|
176 |
+
|
177 |
+
logging.info("Loading PuLID-Flux model.")
|
178 |
+
model.from_pretrained(path=model_path)
|
179 |
+
|
180 |
+
return (model,)
|
181 |
+
|
182 |
+
class PulidFluxInsightFaceLoader:
|
183 |
+
@classmethod
|
184 |
+
def INPUT_TYPES(s):
|
185 |
+
return {
|
186 |
+
"required": {
|
187 |
+
"provider": (["CPU", "CUDA", "ROCM"], ),
|
188 |
+
},
|
189 |
+
}
|
190 |
+
|
191 |
+
RETURN_TYPES = ("FACEANALYSIS",)
|
192 |
+
FUNCTION = "load_insightface"
|
193 |
+
CATEGORY = "pulid"
|
194 |
+
|
195 |
+
def load_insightface(self, provider):
|
196 |
+
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l
|
197 |
+
model.prepare(ctx_id=0, det_size=(640, 640))
|
198 |
+
|
199 |
+
return (model,)
|
200 |
+
|
201 |
+
class PulidFluxEvaClipLoader:
|
202 |
+
@classmethod
|
203 |
+
def INPUT_TYPES(s):
|
204 |
+
return {
|
205 |
+
"required": {},
|
206 |
+
}
|
207 |
+
|
208 |
+
RETURN_TYPES = ("EVA_CLIP",)
|
209 |
+
FUNCTION = "load_eva_clip"
|
210 |
+
CATEGORY = "pulid"
|
211 |
+
|
212 |
+
def load_eva_clip(self):
|
213 |
+
from .eva_clip.factory import create_model_and_transforms
|
214 |
+
|
215 |
+
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
|
216 |
+
|
217 |
+
model = model.visual
|
218 |
+
|
219 |
+
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN)
|
220 |
+
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD)
|
221 |
+
if not isinstance(eva_transform_mean, (list, tuple)):
|
222 |
+
model["image_mean"] = (eva_transform_mean,) * 3
|
223 |
+
if not isinstance(eva_transform_std, (list, tuple)):
|
224 |
+
model["image_std"] = (eva_transform_std,) * 3
|
225 |
+
|
226 |
+
return (model,)
|
227 |
+
|
228 |
+
class ApplyPulidFlux:
|
229 |
+
@classmethod
|
230 |
+
def INPUT_TYPES(s):
|
231 |
+
return {
|
232 |
+
"required": {
|
233 |
+
"model": ("MODEL", ),
|
234 |
+
"pulid_flux": ("PULIDFLUX", ),
|
235 |
+
"eva_clip": ("EVA_CLIP", ),
|
236 |
+
"face_analysis": ("FACEANALYSIS", ),
|
237 |
+
"image": ("IMAGE", ),
|
238 |
+
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }),
|
239 |
+
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
240 |
+
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
241 |
+
},
|
242 |
+
"optional": {
|
243 |
+
"attn_mask": ("MASK", ),
|
244 |
+
},
|
245 |
+
"hidden": {
|
246 |
+
"unique_id": "UNIQUE_ID"
|
247 |
+
},
|
248 |
+
}
|
249 |
+
|
250 |
+
RETURN_TYPES = ("MODEL",)
|
251 |
+
FUNCTION = "apply_pulid_flux"
|
252 |
+
CATEGORY = "pulid"
|
253 |
+
|
254 |
+
def __init__(self):
|
255 |
+
self.pulid_data_dict = None
|
256 |
+
|
257 |
+
def apply_pulid_flux(self, model, pulid_flux, eva_clip, face_analysis, image, weight, start_at, end_at, attn_mask=None, unique_id=None):
|
258 |
+
device = comfy.model_management.get_torch_device()
|
259 |
+
# Why should I care what args say, when the unet model has a different dtype?!
|
260 |
+
# Am I missing something?!
|
261 |
+
#dtype = comfy.model_management.unet_dtype()
|
262 |
+
dtype = model.model.diffusion_model.dtype
|
263 |
+
# Because of 8bit models we must check what cast type does the unet uses
|
264 |
+
# ZLUDA (Intel, AMD) & GPUs with compute capability < 8.0 don't support bfloat16 etc.
|
265 |
+
# Issue: https://github.com/balazik/ComfyUI-PuLID-Flux/issues/6
|
266 |
+
if model.model.manual_cast_dtype is not None:
|
267 |
+
dtype = model.model.manual_cast_dtype
|
268 |
+
|
269 |
+
eva_clip.to(device, dtype=dtype)
|
270 |
+
pulid_flux.to(device, dtype=dtype)
|
271 |
+
|
272 |
+
# TODO: Add masking support!
|
273 |
+
if attn_mask is not None:
|
274 |
+
if attn_mask.dim() > 3:
|
275 |
+
attn_mask = attn_mask.squeeze(-1)
|
276 |
+
elif attn_mask.dim() < 3:
|
277 |
+
attn_mask = attn_mask.unsqueeze(0)
|
278 |
+
attn_mask = attn_mask.to(device, dtype=dtype)
|
279 |
+
|
280 |
+
image = tensor_to_image(image)
|
281 |
+
|
282 |
+
face_helper = FaceRestoreHelper(
|
283 |
+
upscale_factor=1,
|
284 |
+
face_size=512,
|
285 |
+
crop_ratio=(1, 1),
|
286 |
+
det_model='retinaface_resnet50',
|
287 |
+
save_ext='png',
|
288 |
+
device=device,
|
289 |
+
)
|
290 |
+
|
291 |
+
face_helper.face_parse = None
|
292 |
+
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device)
|
293 |
+
|
294 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
295 |
+
cond = []
|
296 |
+
|
297 |
+
# Analyse multiple images at multiple sizes and combine largest area embeddings
|
298 |
+
for i in range(image.shape[0]):
|
299 |
+
# get insightface embeddings
|
300 |
+
iface_embeds = None
|
301 |
+
for size in [(size, size) for size in range(640, 256, -64)]:
|
302 |
+
face_analysis.det_model.input_size = size
|
303 |
+
face_info = face_analysis.get(image[i])
|
304 |
+
if face_info:
|
305 |
+
# Only use the maximum face
|
306 |
+
# Removed the reverse=True from original code because we need the largest area not the smallest one!
|
307 |
+
# Sorts the list in ascending order (smallest to largest),
|
308 |
+
# then selects the last element, which is the largest face
|
309 |
+
face_info = sorted(face_info, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
|
310 |
+
iface_embeds = torch.from_numpy(face_info.embedding).unsqueeze(0).to(device, dtype=dtype)
|
311 |
+
break
|
312 |
+
else:
|
313 |
+
# No face detected, skip this image
|
314 |
+
logging.warning(f'Warning: No face detected in image {str(i)}')
|
315 |
+
continue
|
316 |
+
|
317 |
+
# get eva_clip embeddings
|
318 |
+
face_helper.clean_all()
|
319 |
+
face_helper.read_image(image[i])
|
320 |
+
face_helper.get_face_landmarks_5(only_center_face=True)
|
321 |
+
face_helper.align_warp_face()
|
322 |
+
|
323 |
+
if len(face_helper.cropped_faces) == 0:
|
324 |
+
# No face detected, skip this image
|
325 |
+
continue
|
326 |
+
|
327 |
+
# Get aligned face image
|
328 |
+
align_face = face_helper.cropped_faces[0]
|
329 |
+
# Convert bgr face image to tensor
|
330 |
+
align_face = image_to_tensor(align_face).unsqueeze(0).permute(0, 3, 1, 2).to(device)
|
331 |
+
parsing_out = face_helper.face_parse(functional.normalize(align_face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
332 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
333 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
334 |
+
white_image = torch.ones_like(align_face)
|
335 |
+
# Only keep the face features
|
336 |
+
face_features_image = torch.where(bg, white_image, to_gray(align_face))
|
337 |
+
|
338 |
+
# Transform img before sending to eva_clip
|
339 |
+
# Apparently MPS only supports NEAREST interpolation?
|
340 |
+
face_features_image = functional.resize(face_features_image, eva_clip.image_size, transforms.InterpolationMode.BICUBIC if 'cuda' in device.type else transforms.InterpolationMode.NEAREST).to(device, dtype=dtype)
|
341 |
+
face_features_image = functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std)
|
342 |
+
|
343 |
+
# eva_clip
|
344 |
+
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False)
|
345 |
+
id_cond_vit = id_cond_vit.to(device, dtype=dtype)
|
346 |
+
for idx in range(len(id_vit_hidden)):
|
347 |
+
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype)
|
348 |
+
|
349 |
+
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True))
|
350 |
+
|
351 |
+
# Combine embeddings
|
352 |
+
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1)
|
353 |
+
|
354 |
+
# Pulid_encoder
|
355 |
+
cond.append(pulid_flux.get_embeds(id_cond, id_vit_hidden))
|
356 |
+
|
357 |
+
if not cond:
|
358 |
+
# No faces detected, return the original model
|
359 |
+
logging.warning("PuLID warning: No faces detected in any of the given images, returning unmodified model.")
|
360 |
+
return (model,)
|
361 |
+
|
362 |
+
# average embeddings
|
363 |
+
cond = torch.cat(cond).to(device, dtype=dtype)
|
364 |
+
if cond.shape[0] > 1:
|
365 |
+
cond = torch.mean(cond, dim=0, keepdim=True)
|
366 |
+
|
367 |
+
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
|
368 |
+
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
|
369 |
+
|
370 |
+
# Patch the Flux model (original diffusion_model)
|
371 |
+
# Nah, I don't care for the official ModelPatcher because it's undocumented!
|
372 |
+
# I want the end result now, and I don’t mind if I break other custom nodes in the process. 😄
|
373 |
+
flux_model = model.model.diffusion_model
|
374 |
+
# Let's see if we already patched the underlying flux model, if not apply patch
|
375 |
+
if not hasattr(flux_model, "pulid_ca"):
|
376 |
+
# Add perceiver attention, variables and current node data (weight, embedding, sigma_start, sigma_end)
|
377 |
+
# The pulid_data is stored in Dict by unique node index,
|
378 |
+
# so we can chain multiple ApplyPulidFlux nodes!
|
379 |
+
flux_model.pulid_ca = pulid_flux.pulid_ca
|
380 |
+
flux_model.pulid_double_interval = pulid_flux.double_interval
|
381 |
+
flux_model.pulid_single_interval = pulid_flux.single_interval
|
382 |
+
flux_model.pulid_data = {}
|
383 |
+
# Replace model forward_orig with our own
|
384 |
+
new_method = forward_orig.__get__(flux_model, flux_model.__class__)
|
385 |
+
setattr(flux_model, 'forward_orig', new_method)
|
386 |
+
|
387 |
+
# Patch is already in place, add data (weight, embedding, sigma_start, sigma_end) under unique node index
|
388 |
+
flux_model.pulid_data[unique_id] = {
|
389 |
+
'weight': weight,
|
390 |
+
'embedding': cond,
|
391 |
+
'sigma_start': sigma_start,
|
392 |
+
'sigma_end': sigma_end,
|
393 |
+
}
|
394 |
+
|
395 |
+
# Keep a reference for destructor (if node is deleted the data will be deleted as well)
|
396 |
+
self.pulid_data_dict = {'data': flux_model.pulid_data, 'unique_id': unique_id}
|
397 |
+
|
398 |
+
return (model,)
|
399 |
+
|
400 |
+
def __del__(self):
|
401 |
+
# Destroy the data for this node
|
402 |
+
if self.pulid_data_dict:
|
403 |
+
del self.pulid_data_dict['data'][self.pulid_data_dict['unique_id']]
|
404 |
+
del self.pulid_data_dict
|
405 |
+
|
406 |
+
|
407 |
+
NODE_CLASS_MAPPINGS = {
|
408 |
+
"PulidFluxModelLoader": PulidFluxModelLoader,
|
409 |
+
"PulidFluxInsightFaceLoader": PulidFluxInsightFaceLoader,
|
410 |
+
"PulidFluxEvaClipLoader": PulidFluxEvaClipLoader,
|
411 |
+
"ApplyPulidFlux": ApplyPulidFlux,
|
412 |
+
}
|
413 |
+
|
414 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
415 |
+
"PulidFluxModelLoader": "Load PuLID Flux Model",
|
416 |
+
"PulidFluxInsightFaceLoader": "Load InsightFace (PuLID Flux)",
|
417 |
+
"PulidFluxEvaClipLoader": "Load Eva Clip (PuLID Flux)",
|
418 |
+
"ApplyPulidFlux": "Apply PuLID Flux",
|
419 |
+
}
|