File size: 9,365 Bytes
5d20072
dea462a
1e85041
 
64d1371
4b44c6a
684e692
f42c616
 
dea462a
26b478e
 
 
 
 
 
 
4fcc8cd
26b478e
 
 
 
c9cc87b
64d1371
c9cc87b
26b478e
 
 
 
 
0a48439
 
 
 
 
 
 
725e115
 
 
 
0a48439
725e115
 
 
 
 
 
 
 
 
26b478e
 
 
 
0d4a81a
26b478e
 
 
 
 
0d4a81a
26b478e
64d1371
 
26b478e
 
 
 
8b0f701
09fe96c
 
 
 
 
90db3b8
2306856
 
31057e3
2306856
 
 
684e692
 
8b0f701
71c7113
684e692
8b0f701
71c7113
684e692
2306856
 
 
 
 
 
 
 
 
f42c616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306856
7f9e9d7
 
 
 
 
 
 
 
2306856
b617e78
 
 
90db3b8
 
 
b617e78
 
 
4b44c6a
f42c616
 
 
 
 
c5afedf
 
f42c616
c5afedf
 
 
 
 
f42c616
 
c5afedf
2306856
 
f42c616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import streamlit as st
import whisper
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import base64
from pydub import AudioSegment
from hezar.models import Model
import librosa
import soundfile as sf

st.set_page_config(
    page_title="Sing It Forward App",
    page_icon="🎵")

st.markdown(
    """
    <style>
    body {
        background: linear-gradient(to bottom, #0E5AAB, #00ffff);
        padding: 20px;
        border-radius: 10px;
    }
    a {
        color: #EDA67C !important
    }    
    </style>
    """,
    unsafe_allow_html=True
)

def load_image(image_file):
    with open(image_file, "rb") as f:
        return f.read()

image_data = load_image("bcg.jpg")  
image_base64 = base64.b64encode(image_data).decode()

st.markdown(
    f"""
    <style>
    .stApp {{
        background-image: url(data:image/jpeg;base64,{image_base64});
        background-size: cover;
        background-position: center;
        background-repeat: no-repeat;
    }}
    </style>
    """,
    unsafe_allow_html=True
)

st.markdown("<h1 style='text-align: center; margin-bottom: 5px;'>Sing It Forward App🎵</h1>", unsafe_allow_html=True)

description = """
<h5>Welcome to Sing It Forward App!</h5>

<p style="text-align: justify;">
Get ready to test your singing skills and memory! First, listen carefully to the first part of the song, then it’s your turn to shine.
Record yourself singing the next 15 seconds on your own, matching the lyrics and rhythm perfectly. Think you’ve got what it takes to keep the music going?
Let’s see if you can hit the right notes and showcase your talent! Unleash your inner star and take the challenge!
</p>

📌For any questions or contact:  
**Name:** <span style="color: #EDA67C;">Sahand Khorsandi</span>  
**Email:** <a href="mailto:[email protected]" style="color: #EDA67C;">[email protected]</a>"""
st.markdown(description, unsafe_allow_html=True)
st.write('------')



def cosine_sim(text1, text2):
    vectorizer = TfidfVectorizer().fit_transform([text1, text2])
    vectors = vectorizer.toarray()
    return cosine_similarity(vectors)[0, 1]
    
def take_challenge(music_file, typed_lyrics, key, language):
    st.write("Listen to music since you have to record 15seconds after that")
    st.audio(music_file)
    audio_value = st.experimental_audio_input("Sing Rest of music:🎙️", key=key)
    if audio_value:
        with open("user_sing.mp3", "wb") as f:
            f.write(audio_value.getbuffer())
            
        if language == "en":
            english_model = whisper.load_model("base.en")
            user_lyrics = english_model.transcribe("user_sing.mp3", language=language)["text"]
        else:
            persian_model = Model.load("hezarai/whisper-small-fa")
            user_lyrics = persian_model.predict("user_sing.mp3")[0]["text"]
            
        st.write(user_lyrics)
        similarity_score = cosine_sim(typed_lyrics, user_lyrics)
        if similarity_score > 0.85:
            st.success('Awsome! You are doing great', icon="✅")
            st.markdown('<style>div.stAlert { background-color: rgba(3, 67, 24, 0.9); }</style>', unsafe_allow_html=True)
        else:
            st.error('Awful! Try harder next time', icon="🚨")
            st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)

def change_volume(input_file, output_file, volume_factor):
    sound = AudioSegment.from_mp3(input_file)
    volume_changed = sound + volume_factor
    volume_changed.export(output_file, format="mp3")

def change_speed(input_file, output_file, speed_factor):
    sound, sr = librosa.load(input_file)
    speed_changed = librosa.effects.time_stretch(sound, rate=speed_factor)
    sf.write(output_file, speed_changed, sr)

def change_pitch(input_file, output_file, pitch_factor):
    sound, sr = librosa.load(input_file)
    pitch_changed = librosa.effects.pitch_shift(sound, sr=sr, n_steps=pitch_factor)
    sf.write(output_file, pitch_changed, sr)

def low_pass_filter(input_file, output_file, cutoff_freq):
    sound = AudioSegment.from_mp3(input_file)
    low_filtered_sound = sound.low_pass_filter(cutoff_freq)
    low_filtered_sound.export(output_file, format="mp3")

def high_pass_filter(input_file, output_file, cutoff_freq):
    sound = AudioSegment.from_mp3(input_file)
    high_filtered_sound = sound.high_pass_filter(cutoff_freq)
    high_filtered_sound.export(output_file, format="mp3")

def pan_left_right(input_file, output_file, pan_factor):
    sound = AudioSegment.from_mp3(input_file)
    pan_sound = sound.pan(pan_factor)
    pan_sound.export(output_file, format="mp3")

def fade_in_ms(input_file, output_file, fade_factor):
    sound = AudioSegment.from_mp3(input_file)
    faded_sound = sound.fade_in(fade_factor)
    faded_sound.export(output_file, format="mp3")

def fade_out_ms(input_file, output_file, fade_factor):
    sound = AudioSegment.from_mp3(input_file)
    faded_sound = sound.fade_out(fade_factor)
    faded_sound.export(output_file, format="mp3")


            
tab1, tab2 = st.tabs(["Take Challenge", "Make Challenge"])

with tab1:
    lyrics = "Far across the distance And spaces between us You have come to show you go on"
    take_challenge("titanic.mp3", lyrics, key="en_challenge", language="en")

    
with tab2:
    st.write("Upload music to make challenge:")
    uploaded_file = st.file_uploader("Choose a music file", type=["mp3", "wav"])
    language_mapping = {"English": "en", "Persian": "fa"}
    selected_language = st.radio("Select Language", language_mapping.keys(), horizontal=True)
    language = language_mapping[selected_language]
    if uploaded_file is not None:
        with open("raw_music.mp3", "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.audio("raw_music.mp3")

        current_input = "raw_music.mp3"
        output_file = "processed_music.mp3"

        trimm_check = st.checkbox("Trim")
        if trimm_check:   
            st.write("Specify start and end times for trimming:")
            audio = AudioSegment.from_mp3(current_input)
            duration = len(audio) // 1000 
            start_time = st.number_input("Start Time (seconds)", min_value=0, max_value=duration, value=0)
            end_time = st.number_input("End Time (seconds)", min_value=0, max_value=duration, value=duration)
            if start_time < end_time:
                trimmed_audio = audio[start_time * 1000:end_time * 1000]
                trimmed_audio.export(output_file, format="mp3")
                current_input = output_file
            else:
                st.error('Start Time should be smaller than End Time!', icon="❌")
                st.markdown('<style>div.stAlert { background-color: rgba(241, 36, 36, 0.9); }</style>', unsafe_allow_html=True)

        volume_checkbox = st.checkbox("Change Volume")
        if volume_checkbox:
            volume_factor = st.slider("Volume Factor (dB)", -30, 30, 0)
            change_volume(current_input, output_file, volume_factor)
            current_input = output_file

        speed_checkbox = st.checkbox("Change Speed")
        if speed_checkbox:
            speed_factor = st.slider("Speed Factor", 0.25, 2.0, 1.0)
            change_speed(current_input, output_file, speed_factor)
            current_input = output_file

        pitch_checkbox = st.checkbox("Change Pitch")
        if pitch_checkbox:
            pitch_factor = st.slider("Pitch Shift (fractional steps)", -12, 12, 0)
            change_pitch(current_input, output_file, pitch_factor)
            current_input = output_file

        low_pass_checkbox = st.checkbox("Low Pass Filter")
        if low_pass_checkbox:
            cutoff_freq = st.slider("Low Pass Filter Cutoff Frequency", min_value=20, max_value=20000, value=2000)
            low_pass_filter(current_input, output_file, cutoff_freq)
            current_input = output_file

        high_pass_checkbox = st.checkbox("High Pass Filter")
        if high_pass_checkbox:
            cutoff_freq = st.slider("High Pass Filter Cutoff Frequency", min_value=20, max_value=20000, value=2000)
            high_pass_filter(current_input, output_file, cutoff_freq)
            current_input = output_file

        pan_checkbox = st.checkbox("Pan Left/Right")
        if pan_checkbox:
            pan_factor = st.slider("Pan Factor (-1 for Left, 1 for Right)", -1.0, 1.0, 0.0)
            pan_left_right(current_input, output_file, pan_factor)
            current_input = output_file

        fade_in_checkbox = st.checkbox("Fade In")
        if fade_in_checkbox:
            fade_in_time = st.slider("Fade In Duration (ms)", min_value=0, max_value=10000, value=1000)
            fade_in_ms(current_input, output_file, fade_in_time)
            current_input = output_file

        fade_out_checkbox = st.checkbox("Fade Out")
        if fade_out_checkbox:
            fade_out_time = st.slider("Fade Out Duration (ms)", min_value=0, max_value=10000, value=1000)
            fade_out_ms(current_input, output_file, fade_out_time)
            current_input = output_file


        st.write("Now type what user should sing:")
        typed_lyrics = st.text_area("Lyrics to be singed:")
        st.write('------')
        take_challenge(current_input, typed_lyrics, "unique_key_1", language)