sahandkh1419 commited on
Commit
1e85041
1 Parent(s): a55084b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -1,11 +1,18 @@
1
  import streamlit as st
2
  import whisper
 
 
3
 
 
 
 
 
 
4
  model = whisper.load_model("base")
5
  st.audio("titanic.mp3")
6
- st.write("Please wait for the music to finish before recording the rest of it by your own.")
7
 
8
- audio_value = st.experimental_audio_input("Record a voice message")
9
  lyrics = "Far across the distance And spaces between us You have come to show you go on"
10
 
11
  if audio_value:
@@ -14,4 +21,6 @@ if audio_value:
14
 
15
  user_lyrics = model.transcribe("user_sing.mp3")["text"]
16
  st.write(user_lyrics)
17
-
 
 
 
1
  import streamlit as st
2
  import whisper
3
+ from sklearn.feature_extraction.text import TfidfVectorizer
4
+ from sklearn.metrics.pairwise import cosine_similarity
5
 
6
+ def cosine_sim(text1, text2):
7
+ vectorizer = TfidfVectorizer().fit_transform([text1, text2])
8
+ vectors = vectorizer.toarray()
9
+ return cosine_similarity(vectors)[0, 1]
10
+
11
  model = whisper.load_model("base")
12
  st.audio("titanic.mp3")
13
+ st.write("Listen to music since you have to record 15seconds after that")
14
 
15
+ audio_value = st.experimental_audio_input("Sing Rest of music:🎙️")
16
  lyrics = "Far across the distance And spaces between us You have come to show you go on"
17
 
18
  if audio_value:
 
21
 
22
  user_lyrics = model.transcribe("user_sing.mp3")["text"]
23
  st.write(user_lyrics)
24
+ similarity_score = cosine_sim(lyrics, user_lyrics)
25
+ if similarity_score > 0.85:
26
+ st.success('This is a success message!', icon="✅")