Spaces:
Running
Running
File size: 3,310 Bytes
5d20072 dea462a 1e85041 dea462a 26b478e 4fcc8cd 26b478e c9cc87b 26b478e 725e115 0a48439 725e115 0a48439 725e115 0a48439 26b478e 0d4a81a 26b478e 0d4a81a 26b478e 09fe96c 26b478e dea462a 1e85041 d352d4e 5d20072 04c8b38 1a2e1f9 5d20072 d344ece dea462a 1e85041 87479c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import streamlit as st
import whisper
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
st.set_page_config(
page_title="Sing It Forward App",
page_icon="🎵")
st.markdown(
"""
<style>
body {
background: linear-gradient(to bottom, #0E5AAB, #00ffff);
padding: 20px;
border-radius: 10px;
}
a {
color: black !important
}
</style>
""",
unsafe_allow_html=True
)
# background_image_url = "https://static.vecteezy.com/system/resources/previews/020/333/164/non_2x/stephen-foster-memorial-day-illustration-with-copy-space-area-and-blue-background-suitable-to-use-on-memorial-day-event-vector.jpg"
# st.markdown(
# f"""
# <style>
# .stApp {{
# background-image: url("{background_image_url}");
# background-size: cover;
# background-position: center;
# background-repeat: no-repeat;
# }}
# </style>
# """,
# unsafe_allow_html=True
# )
import base64
def load_image(image_file):
with open(image_file, "rb") as f:
return f.read()
image_data = load_image("bcg.jpg")
image_base64 = base64.b64encode(image_data).decode()
st.markdown(
f"""
<style>
.stApp {{
background-image: url(data:image/jpeg;base64,{image_base64});
background-size: cover;
background-position: center;
background-repeat: no-repeat;
}}
</style>
""",
unsafe_allow_html=True
)
st.markdown("<h1 style='text-align: center; margin-bottom: 5px;'>Sing It Forward App🎵</h1>", unsafe_allow_html=True)
description = """
<h5>Welcome to Sing It Forward App!</h5>
<p style="text-align: justify;">
Get ready to test your singing skills and memory! First, listen carefully to the first part of the song, then it’s your turn to shine.
Record yourself singing the next 15 seconds on your own, matching the lyrics and rhythm perfectly. Think you’ve got what it takes to keep the music going?
Let’s see if you can hit the right notes and showcase your talent! Unleash your inner star and take the challenge!
</p>
📌For any questions or contact:
**Name:** <span style="color: black;">Sahand Khorsandi</span>
**Email:** <a href="mailto:[email protected]" style="color: black;">[email protected]</a>"""
st.markdown(description, unsafe_allow_html=True)
st.write('------')
def cosine_sim(text1, text2):
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
vectors = vectorizer.toarray()
return cosine_similarity(vectors)[0, 1]
model = whisper.load_model("base")
st.write("Listen to music since you have to record 15seconds after that")
st.audio("titanic.mp3")
audio_value = st.experimental_audio_input("Sing Rest of music:🎙️")
lyrics = "Far across the distance And spaces between us You have come to show you go on"
if audio_value:
with open("user_sing.mp3", "wb") as f:
f.write(audio_value.getbuffer())
user_lyrics = model.transcribe("user_sing.mp3")["text"]
st.write(user_lyrics)
similarity_score = cosine_sim(lyrics, user_lyrics)
if similarity_score > 0.85:
st.success('Awsome! You are doing great', icon="✅")
else:
st.error('Awful! Try harder next time', icon="🚨") |