Spaces:
Sleeping
Sleeping
File size: 6,579 Bytes
2548c76 20946b6 2548c76 20946b6 2548c76 20946b6 3969a3d c9f4960 965bb86 bbb0c13 e2146c2 2062064 b1dbc5a 429c1cc b1dbc5a 2548c76 aa9d78c 5a04251 3aff373 2062064 258c010 20946b6 2548c76 fa014b1 2548c76 20946b6 70b4c2a b15be69 20946b6 b15be69 20946b6 b15be69 20946b6 b15be69 20946b6 974a678 20946b6 b15be69 20946b6 70b4c2a 965bb86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import random
import numpy as np
import warnings
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from torch.utils.data import Dataset, DataLoader
import gc
import streamlit as st
warnings.filterwarnings("ignore")
st.title('ReactionT5 task forward')
st.markdown('''
##### At this space, you can predict the products of reactions from their inputs.
##### The code expects input_data as a string or CSV file that contains an "input" column.
##### The format of the string or contents of the column should be "REACTANT:{reactants}REAGENT:{reagents}".
##### If there is no reagent, fill the blank with a space. For multiple compounds, concatenate them with ".".
##### The output contains SMILES of predicted products and the sum of log-likelihood for each prediction, ordered by their log-likelihood (0th is the most probable product).
''')
display_text = 'input the reaction smiles (e.g. REACTANT:COC(=O)C1=CCCN(C)C1.O.[Al+3].[H-].[Li+].[Na+].[OH-]REAGENT:C1CCOC1)'
st.download_button(
label="Download demo_input.csv",
data=pd.read_csv('demo_input.csv').to_csv(index=False),
file_name='demo_input.csv',
mime='text/csv',
)
class CFG():
num_beams = st.number_input(label='num beams', min_value=1, max_value=10, value=5, step=1)
num_return_sequences = num_beams
uploaded_file = st.file_uploader("Choose a CSV file")
input_data = st.text_area(display_text)
model_name_or_path = 'sagawa/ReactionT5v2-forward'
input_column = 'input'
input_max_length = 400
model = 't5'
seed = 42
batch_size=1
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def prepare_input(cfg, text):
inputs = tokenizer(
text,
return_tensors="pt",
max_length=cfg.input_max_length,
padding="max_length",
truncation=True,
)
dic = {"input_ids": [], "attention_mask": []}
for k, v in inputs.items():
dic[k].append(torch.tensor(v[0], dtype=torch.long))
return dic
class ProductDataset(Dataset):
def __init__(self, cfg, df):
self.cfg = cfg
self.inputs = df[cfg.input_column].values
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return prepare_input(self.cfg, self.inputs[idx])
def predict_single_input(input_compound):
inp = tokenizer(input_compound, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(
**inp,
num_beams=CFG.num_beams,
num_return_sequences=CFG.num_return_sequences,
return_dict_in_generate=True,
output_scores=True,
)
return output
def decode_output(output):
sequences = [
tokenizer.decode(seq, skip_special_tokens=True).replace(" ", "").rstrip(".")
for seq in output["sequences"]
]
if CFG.num_beams > 1:
scores = output["sequences_scores"].tolist()
return sequences, scores
return sequences, None
def save_single_prediction(input_compound, output, scores):
output_data = [input_compound] + output + (scores if scores else [])
columns = (
["input"]
+ [f"{i}th" for i in range(CFG.num_beams)]
+ ([f"{i}th score" for i in range(CFG.num_beams)] if scores else [])
)
output_df = pd.DataFrame([output_data], columns=columns)
return output_df
def save_multiple_predictions(input_data, sequences, scores):
output_list = [
[input_data.loc[i // CFG.num_return_sequences, CFG.input_column]]
+ sequences[i : i + CFG.num_return_sequences]
+ scores[i : i + CFG.num_return_sequences]
for i in range(0, len(sequences), CFG.num_return_sequences)
]
columns = (
["input"]
+ [f"{i}th" for i in range(CFG.num_return_sequences)]
+ ([f"{i}th score" for i in range(CFG.num_return_sequences)] if scores else [])
)
output_df = pd.DataFrame(output_list, columns=columns)
return output_df
if st.button('predict'):
with st.spinner('Now processing. If num beams=5, this process takes about 15 seconds per reaction.'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed_everything(seed=CFG.seed)
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors="pt")
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
model.eval()
if CFG.uploaded_file is None:
input_compound = CFG.input_data
output = predict_single_input(input_compound)
sequences, scores = decode_output(output)
output_df = save_single_prediction(input_compound, sequences, scores)
else:
input_data = pd.read_csv(CFG.uploaded_file)
dataset = ProductDataset(CFG, input_data)
dataloader = DataLoader(
dataset,
batch_size=CFG.batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last=False,
)
all_sequences, all_scores = [], []
for inputs in dataloader:
inputs = {k: v[0].to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model.generate(
**inputs,
num_beams=CFG.num_beams,
num_return_sequences=CFG.num_return_sequences,
return_dict_in_generate=True,
output_scores=True,
)
sequences, scores = decode_output(output)
all_sequences.extend(sequences)
if scores:
all_scores.extend(scores)
del output
torch.cuda.empty_cache()
gc.collect()
output_df = save_multiple_predictions(input_data, all_sequences, all_scores)
@st.cache
def convert_df(df):
return df.to_csv(index=False)
csv = convert_df(output_df)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='output.csv',
mime='text/csv',
)
|