Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -40,32 +40,84 @@ class CFG():
|
|
40 |
seed = 42
|
41 |
|
42 |
if st.button('predict'):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
|
70 |
inp = tokenizer(input_compound, return_tensors='pt').to(device)
|
71 |
output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
|
@@ -83,8 +135,7 @@ if st.button('predict'):
|
|
83 |
scores.append(None)
|
84 |
output += scores
|
85 |
output = [input_compound] + output
|
86 |
-
|
87 |
-
|
88 |
else:
|
89 |
output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
|
90 |
mol = Chem.MolFromSmiles(output[0])
|
@@ -92,74 +143,24 @@ if st.button('predict'):
|
|
92 |
output.append(output[0])
|
93 |
else:
|
94 |
output.append(None)
|
95 |
-
output = [input_compound] + output
|
96 |
-
outputs.append(output)
|
97 |
|
98 |
-
if CFG.num_beams > 1:
|
99 |
-
output_df = pd.DataFrame(outputs, columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
|
100 |
-
else:
|
101 |
-
output_df = pd.DataFrame(outputs, columns=['input', '0th', 'valid compound'])
|
102 |
-
|
103 |
-
|
104 |
-
@st.cache
|
105 |
-
def convert_df(df):
|
106 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
107 |
-
return df.to_csv(index=False)
|
108 |
-
|
109 |
-
csv = convert_df(output_df)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
data=csv,
|
114 |
-
file_name='output.csv',
|
115 |
-
mime='text/csv',
|
116 |
-
)
|
117 |
-
|
118 |
-
else:
|
119 |
-
input_compound = CFG.input_data
|
120 |
-
min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
|
121 |
-
inp = tokenizer(input_compound, return_tensors='pt').to(device)
|
122 |
-
output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
|
123 |
-
if CFG.num_beams > 1:
|
124 |
-
scores = output['sequences_scores'].tolist()
|
125 |
-
output = [tokenizer.decode(i, skip_special_tokens=True).replace('. ', '.').rstrip('.') for i in output['sequences']]
|
126 |
-
for ith, out in enumerate(output):
|
127 |
-
mol = Chem.MolFromSmiles(out.rstrip('.'))
|
128 |
-
if type(mol) == rdkit.Chem.rdchem.Mol:
|
129 |
-
output.append(out.rstrip('.'))
|
130 |
-
scores.append(scores[ith])
|
131 |
-
break
|
132 |
-
if type(mol) == None:
|
133 |
-
output.append(None)
|
134 |
-
scores.append(None)
|
135 |
-
output += scores
|
136 |
-
output = [input_compound] + output
|
137 |
-
|
138 |
-
else:
|
139 |
-
output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
|
140 |
-
mol = Chem.MolFromSmiles(output[0])
|
141 |
-
if type(mol) == rdkit.Chem.rdchem.Mol:
|
142 |
-
output.append(output[0])
|
143 |
else:
|
144 |
-
output.
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
st.download_button(
|
161 |
-
label="Download data as CSV",
|
162 |
-
data=csv,
|
163 |
-
file_name='output.csv',
|
164 |
-
mime='text/csv',
|
165 |
-
)
|
|
|
40 |
seed = 42
|
41 |
|
42 |
if st.button('predict'):
|
43 |
+
with st.spinner('Now processing. If num beams=5, this process takes about 15 seconds per reaction.'):
|
44 |
+
|
45 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
46 |
+
|
47 |
+
def seed_everything(seed=42):
|
48 |
+
random.seed(seed)
|
49 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
50 |
+
np.random.seed(seed)
|
51 |
+
torch.manual_seed(seed)
|
52 |
+
torch.cuda.manual_seed(seed)
|
53 |
+
torch.backends.cudnn.deterministic = True
|
54 |
+
seed_everything(seed=CFG.seed)
|
|
|
|
|
55 |
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
|
58 |
+
|
59 |
+
if CFG.model == 't5':
|
60 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
|
61 |
+
elif CFG.model == 'deberta':
|
62 |
+
model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)
|
63 |
+
|
64 |
+
|
65 |
+
if CFG.uploaded_file is not None:
|
66 |
+
input_data = pd.read_csv(CFG.uploaded_file)
|
67 |
+
outputs = []
|
68 |
+
for idx, row in input_data.iterrows():
|
69 |
+
input_compound = row['input']
|
70 |
+
min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
|
71 |
+
inp = tokenizer(input_compound, return_tensors='pt').to(device)
|
72 |
+
output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
|
73 |
+
if CFG.num_beams > 1:
|
74 |
+
scores = output['sequences_scores'].tolist()
|
75 |
+
output = [tokenizer.decode(i, skip_special_tokens=True).replace('. ', '.').rstrip('.') for i in output['sequences']]
|
76 |
+
for ith, out in enumerate(output):
|
77 |
+
mol = Chem.MolFromSmiles(out.rstrip('.'))
|
78 |
+
if type(mol) == rdkit.Chem.rdchem.Mol:
|
79 |
+
output.append(out.rstrip('.'))
|
80 |
+
scores.append(scores[ith])
|
81 |
+
break
|
82 |
+
if type(mol) == None:
|
83 |
+
output.append(None)
|
84 |
+
scores.append(None)
|
85 |
+
output += scores
|
86 |
+
output = [input_compound] + output
|
87 |
+
outputs.append(output)
|
88 |
|
89 |
+
else:
|
90 |
+
output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
|
91 |
+
mol = Chem.MolFromSmiles(output[0])
|
92 |
+
if type(mol) == rdkit.Chem.rdchem.Mol:
|
93 |
+
output.append(output[0])
|
94 |
+
else:
|
95 |
+
output.append(None)
|
96 |
+
output = [input_compound] + output
|
97 |
+
outputs.append(output)
|
98 |
+
|
99 |
+
if CFG.num_beams > 1:
|
100 |
+
output_df = pd.DataFrame(outputs, columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
|
101 |
+
else:
|
102 |
+
output_df = pd.DataFrame(outputs, columns=['input', '0th', 'valid compound'])
|
103 |
|
104 |
+
|
105 |
+
@st.cache
|
106 |
+
def convert_df(df):
|
107 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
108 |
+
return df.to_csv(index=False)
|
109 |
+
|
110 |
+
csv = convert_df(output_df)
|
111 |
+
|
112 |
+
st.download_button(
|
113 |
+
label="Download data as CSV",
|
114 |
+
data=csv,
|
115 |
+
file_name='output.csv',
|
116 |
+
mime='text/csv',
|
117 |
+
)
|
118 |
+
|
119 |
+
else:
|
120 |
+
input_compound = CFG.input_data
|
121 |
min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
|
122 |
inp = tokenizer(input_compound, return_tensors='pt').to(device)
|
123 |
output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
|
|
|
135 |
scores.append(None)
|
136 |
output += scores
|
137 |
output = [input_compound] + output
|
138 |
+
|
|
|
139 |
else:
|
140 |
output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
|
141 |
mol = Chem.MolFromSmiles(output[0])
|
|
|
143 |
output.append(output[0])
|
144 |
else:
|
145 |
output.append(None)
|
|
|
|
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
if CFG.num_beams > 1:
|
149 |
+
output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
else:
|
151 |
+
output_df = pd.DataFrame(np.array([input_compound]+output).reshape(1, -1), columns=['input', '0th', 'valid compound'])
|
152 |
+
st.table(output_df)
|
153 |
|
154 |
+
@st.cache
|
155 |
+
def convert_df(df):
|
156 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
157 |
+
return df.to_csv(index=False)
|
158 |
+
|
159 |
+
csv = convert_df(output_df)
|
160 |
+
|
161 |
+
st.download_button(
|
162 |
+
label="Download data as CSV",
|
163 |
+
data=csv,
|
164 |
+
file_name='output.csv',
|
165 |
+
mime='text/csv',
|
166 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|