File size: 7,327 Bytes
93ed498 e2ec341 f4903ba 0d02f18 addc716 93ed498 b43bcfd 17749ab 93ed498 16e49b4 4ad0753 e18bb87 4ad0753 17749ab 58a3a72 7b32bf2 16e49b4 58a3a72 16e49b4 93ed498 6390b56 06cc7e1 b43bcfd 6390b56 ec7e05a 84d8cd6 d1b5796 760415f d1b5796 54d537a 7c3e16e 54d537a 29e7041 3ae4a47 b4565b6 d491d34 cac98b2 7387712 760415f 1d433d0 7387712 ccb1159 fdd9d54 0888c95 0eaea57 c535860 29e7041 d972151 b4565b6 b5411ca 195b309 4ad0753 dd65e88 0d02f18 5554587 4ad0753 195b309 ce85b8f 93ed498 c7296f8 586b115 2cb2161 5554587 2cb2161 dd65e88 c60d79d dd65e88 0bfea1f dd65e88 a3c3c74 dd65e88 c60d79d a164036 0216343 a164036 0216343 a164036 dd65e88 b5411ca 2cb2161 d1b5796 84d8cd6 195b309 84d8cd6 ec7e05a 84d8cd6 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator
subprocess.run(
"pip install psutil",
shell=True,
)
import bitsandbytes as bnb # Import bitsandbytes for 8-bit quantization
from datetime import datetime
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'
token=os.getenv('token')
print('token = ',token)
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "mistralai/Mistral-7B-v0.3"
# model_id = "openchat/openchat-3.6-8b-20240522"
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(
# model_id
model_id
, token= token,)
accelerator = Accelerator()
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
# torch_dtype= torch.uint8,
torch_dtype=torch.bfloat16,
# load_in_4bit=True,
# # # torch_dtype=torch.fl,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
# device_map='cuda',
# device_map=accelerator.device_map,
)
#
model = accelerator.prepare(model)
################################################### BG REMOVER ###################################################
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
import base64
from io import BytesIO
from PIL import Image
def convert_image_to_base64(image):
"""
Convert a PIL Image with alpha channel to a base64-encoded string.
"""
# Save the image into a BytesIO buffer
img_byte_array = BytesIO()
image.save(img_byte_array, format="PNG") # Use PNG for transparency
img_byte_array.seek(0) # Reset the pointer to the beginning
# Encode the image bytes to base64
base64_str = base64.b64encode(img_byte_array.getvalue()).decode("utf-8")
return base64_str
import json
def str_to_json(str_obj):
json_obj = json.loads(str_obj)
return json_obj
@spaces.GPU(duration=140)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# yield 'retuend'
# model.to(accelerator.device)
messages = []
json_obj = str_to_json(message)
print(json_obj)
messages= json_obj
try:
image= json_obj['image']
print('selected bg remover')
image = load_img(image, output_type="pil")
image = image.convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
print('remver success')
try:
yield str(convert_image_to_base64(image))
except Exception as e:
print(e)
yield image
except Exception as e:
print("using llama 8b intrcuxt ",e)
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
print(f"Converted input_ids dtype: {input_ids.dtype}")
input_str= str(input_ids2)
print('input str = ', input_str)
with torch.no_grad():
gen_tokens = model.generate(
input_ids,
max_new_tokens=max_tokens,
# do_sample=True,
temperature=temperature,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
gen_text= gen_text.replace(input_str,'')
gen_text= gen_text.replace('<|eot_id|>','')
yield gen_text
# messages = [
# # {"role": "user", "content": "What is your favourite condiment?"},
# # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
# # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
# outputs = model.generate(inputs, max_new_tokens=2000)
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(gen_text)
# yield gen_text
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |