File size: 7,327 Bytes
93ed498
e2ec341
f4903ba
0d02f18
addc716
93ed498
b43bcfd
17749ab
 
93ed498
 
 
16e49b4
4ad0753
e18bb87
 
4ad0753
17749ab
 
 
 
 
58a3a72
7b32bf2
 
 
16e49b4
58a3a72
 
 
16e49b4
 
 
 
 
 
93ed498
6390b56
 
06cc7e1
 
b43bcfd
 
6390b56
ec7e05a
 
84d8cd6
d1b5796
760415f
 
d1b5796
 
54d537a
 
7c3e16e
54d537a
29e7041
3ae4a47
b4565b6
d491d34
 
cac98b2
7387712
760415f
1d433d0
7387712
ccb1159
fdd9d54
0888c95
0eaea57
c535860
29e7041
 
d972151
b4565b6
b5411ca
195b309
4ad0753
dd65e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d02f18
5554587
 
 
 
 
4ad0753
195b309
ce85b8f
93ed498
 
 
 
 
 
 
 
c7296f8
586b115
 
2cb2161
5554587
 
 
 
2cb2161
dd65e88
 
c60d79d
dd65e88
0bfea1f
dd65e88
 
a3c3c74
dd65e88
 
 
 
 
 
 
 
c60d79d
a164036
0216343
a164036
0216343
 
a164036
dd65e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5411ca
2cb2161
 
 
 
 
d1b5796
84d8cd6
195b309
84d8cd6
 
ec7e05a
84d8cd6
 
6390b56
 
 
 
 
93ed498
6390b56
93ed498
6390b56
93ed498
6390b56
 
 
 
 
 
 
 
93ed498
6390b56
 
93ed498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""

from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator


subprocess.run(
    "pip install psutil",
   
    shell=True,
)

import bitsandbytes as bnb  # Import bitsandbytes for 8-bit quantization



from datetime import datetime


subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'



token=os.getenv('token')
print('token = ',token)

from transformers import AutoModelForCausalLM, AutoTokenizer

# model_id = "mistralai/Mistral-7B-v0.3"

# model_id = "openchat/openchat-3.6-8b-20240522"
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"


tokenizer = AutoTokenizer.from_pretrained(
    # model_id
    model_id
    , token= token,)


accelerator = Accelerator()

model = AutoModelForCausalLM.from_pretrained(model_id, token= token, 
                                                 # torch_dtype= torch.uint8, 
                                             torch_dtype=torch.bfloat16,
                                              # load_in_4bit=True,
                                             # #  # torch_dtype=torch.fl,
                                             attn_implementation="flash_attention_2",
                                             low_cpu_mem_usage=True,
                                             # device_map='cuda',
                                             # device_map=accelerator.device_map,
                                             
                                            )


# 
model = accelerator.prepare(model)




###################################################    BG REMOVER ###################################################


import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

    


import base64
from io import BytesIO
from PIL import Image

def convert_image_to_base64(image):
    """
    Convert a PIL Image with alpha channel to a base64-encoded string.
    """
    # Save the image into a BytesIO buffer
    img_byte_array = BytesIO()
    image.save(img_byte_array, format="PNG")  # Use PNG for transparency
    img_byte_array.seek(0)  # Reset the pointer to the beginning

    # Encode the image bytes to base64
    base64_str = base64.b64encode(img_byte_array.getvalue()).decode("utf-8")
    return base64_str



import json

def str_to_json(str_obj):
    json_obj = json.loads(str_obj)
    return json_obj


@spaces.GPU(duration=140)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # yield 'retuend'
    # model.to(accelerator.device)

    messages = []
    json_obj = str_to_json(message)
    print(json_obj)
    
    messages= json_obj

    try:
        image= json_obj['image']
        print('selected bg remover')
        image = load_img(image, output_type="pil")
        image = image.convert("RGB")
        
        image_size = image.size
    
        input_images = transform_image(image).unsqueeze(0).to("cuda")
        # Prediction
        with torch.no_grad():
            preds = birefnet(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(image_size)
        image.putalpha(mask)
        print('remver success')
        
        try:
            yield str(convert_image_to_base64(image))
        except Exception as e:
            print(e)
            yield image
        

    except Exception as e:
        print("using llama 8b intrcuxt ",e)

        input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
        input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
        print(f"Converted input_ids dtype: {input_ids.dtype}")
        input_str= str(input_ids2)
        print('input str = ', input_str)
    
        with torch.no_grad():
            gen_tokens = model.generate(
        input_ids, 
        max_new_tokens=max_tokens, 
        # do_sample=True, 
        temperature=temperature,
        )
    
        gen_text = tokenizer.decode(gen_tokens[0])
        print(gen_text)
        gen_text= gen_text.replace(input_str,'')
        gen_text= gen_text.replace('<|eot_id|>','')
        
        yield gen_text
       
  
#     messages = [
#     # {"role": "user", "content": "What is your favourite condiment?"},
#     # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
#     # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]

    # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

    # outputs = model.generate(inputs, max_new_tokens=2000)
    # gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
   
    # print(gen_text)
    # yield gen_text
    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    # response = ""

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    #     yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()