Update app.py
Browse files
app.py
CHANGED
@@ -17,18 +17,24 @@ print('token = ',token)
|
|
17 |
|
18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
|
20 |
-
model_id = "mistralai/Mistral-7B-v0.3"
|
21 |
|
22 |
-
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
23 |
|
|
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
@@ -41,6 +47,27 @@ def respond(
|
|
41 |
temperature,
|
42 |
top_p,
|
43 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
|
46 |
messages = [
|
@@ -49,13 +76,13 @@ def respond(
|
|
49 |
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
50 |
]
|
51 |
|
52 |
-
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
53 |
|
54 |
-
outputs = model.generate(inputs, max_new_tokens=2000)
|
55 |
-
gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
|
56 |
|
57 |
-
print(gen_text)
|
58 |
-
yield gen_text
|
59 |
# for val in history:
|
60 |
# if val[0]:
|
61 |
# messages.append({"role": "user", "content": val[0]})
|
|
|
17 |
|
18 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
19 |
|
20 |
+
# model_id = "mistralai/Mistral-7B-v0.3"
|
21 |
|
22 |
+
# model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
23 |
|
24 |
+
from airllm import AirLLMLlama2
|
25 |
|
26 |
+
MAX_LENGTH = 128
|
27 |
+
# could use hugging face model repo id:
|
28 |
+
model = AirLLMLlama2("garage-bAInd/Platypus2-70B-instruct")
|
29 |
|
30 |
+
|
31 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id, token= token)
|
32 |
+
|
33 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, token= token, torch_dtype=torch.bfloat16,
|
34 |
+
# # attn_implementation="flash_attention_2",
|
35 |
+
# # low_cpu_mem_usage=True,
|
36 |
+
# device_map="auto"
|
37 |
+
# )
|
38 |
|
39 |
|
40 |
|
|
|
47 |
temperature,
|
48 |
top_p,
|
49 |
):
|
50 |
+
input_text = [
|
51 |
+
'What is the capital of United States?',
|
52 |
+
]
|
53 |
+
|
54 |
+
input_tokens = model.tokenizer(input_text,
|
55 |
+
return_tensors="pt",
|
56 |
+
return_attention_mask=False,
|
57 |
+
truncation=True,
|
58 |
+
max_length=MAX_LENGTH,
|
59 |
+
padding=True)
|
60 |
+
|
61 |
+
generation_output = model.generate(
|
62 |
+
input_tokens['input_ids'].cuda(),
|
63 |
+
max_new_tokens=20,
|
64 |
+
use_cache=True,
|
65 |
+
return_dict_in_generate=True)
|
66 |
+
|
67 |
+
output = model.tokenizer.decode(generation_output.sequences[0])
|
68 |
+
|
69 |
+
print(output)
|
70 |
+
yield output
|
71 |
|
72 |
|
73 |
messages = [
|
|
|
76 |
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
77 |
]
|
78 |
|
79 |
+
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
80 |
|
81 |
+
# outputs = model.generate(inputs, max_new_tokens=2000)
|
82 |
+
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
|
84 |
+
# print(gen_text)
|
85 |
+
# yield gen_text
|
86 |
# for val in history:
|
87 |
# if val[0]:
|
88 |
# messages.append({"role": "user", "content": val[0]})
|