File size: 5,634 Bytes
93ed498
e2ec341
f4903ba
0d02f18
addc716
93ed498
b43bcfd
17749ab
 
93ed498
 
 
16e49b4
4ad0753
 
17749ab
 
 
 
 
58a3a72
 
 
 
 
 
23ab0e2
 
 
 
16e49b4
58a3a72
 
 
 
 
 
 
 
 
 
 
 
16e49b4
 
 
 
 
 
93ed498
6390b56
 
06cc7e1
 
b43bcfd
 
6390b56
ec7e05a
 
84d8cd6
d1b5796
b91461d
d1b5796
 
54d537a
 
07d42bf
54d537a
29e7041
3ae4a47
d491d34
 
cac98b2
bd8e143
 
fcd9576
1f9eb44
3f5dc4a
b91461d
0eaea57
c535860
29e7041
 
d972151
b5411ca
195b309
d491d34
4ad0753
 
3ae4a47
2d9088a
0d02f18
4ad0753
195b309
54d537a
93ed498
 
 
 
 
 
 
 
23ab0e2
58a3a72
 
 
 
 
 
 
 
 
 
 
 
ab6fbd7
126e605
ab6fbd7
d491d34
 
0373802
ab6fbd7
f4ca388
ab6fbd7
 
 
 
 
 
 
b5411ca
d1b5796
 
 
 
 
 
84d8cd6
195b309
84d8cd6
 
ec7e05a
84d8cd6
 
6390b56
 
 
 
 
93ed498
6390b56
93ed498
6390b56
93ed498
6390b56
 
 
 
 
 
 
 
93ed498
6390b56
 
93ed498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""

from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch

subprocess.run(
    "pip install psutil",
   
    shell=True,
)

subprocess.run(
    "pip install pynvml gpustat",
   
    shell=True,
)
def print_s1ystem():
    ram_info = psutil.virtual_memory()
    print(f"Total RAM: {ram_info.total / (1024.0 ** 3)} GB")
    print(f"Available RAM: {ram_info.available / (1024.0 ** 3)} GB")

import psutil
import platform
import gpustat
from datetime import datetime

def get_size(bytes, suffix="B"):
    factor = 1024
    for unit in ["", "K", "M", "G", "T", "P"]:
        if bytes < factor:
            return f"{bytes:.2f}{unit}{suffix}"
        bytes /= factor

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'



token=os.getenv('token')
print('token = ',token)

from transformers import AutoModelForCausalLM, AutoTokenizer

# model_id = "mistralai/Mistral-7B-v0.3"

model_id = "CohereForAI/aya-23-8B"


tokenizer = AutoTokenizer.from_pretrained(
    # model_id
    model_id
    , token= token,)



model = AutoModelForCausalLM.from_pretrained(model_id, token= token, 
                                                 # torch_dtype= torch.uint8, 
                                             torch_dtype=torch.float16,
                                              # torch_dtype=torch.fl,
                                             attn_implementation="flash_attention_2",
                                             low_cpu_mem_usage=True,
                                            
                                             device_map='cuda',
                                             
                                            )


# 


# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })

# Load the model with the inferred device map
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
# model.half()



@spaces.GPU(duration=60)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    print_s1ystem()
    uname = platform.uname()
    print(f"System: {uname.system}")
    print(f"Node Name: {uname.node}")
    print(f"Release: {uname.release}")
    print(f"Version: {uname.version}")
    print(f"Machine: {uname.machine}")
    print(f"Processor: {uname.processor}")

# GPU Information
gpu_stats = gpustat.GPUStatCollection.new_query()
for gpu in gpu_stats:
    print(f"GPU: {gpu.name}  Mem Free: {get_size(gpu.memory_free)}  Mem Used: {get_size(gpu.memory_used)}  Mem Total: {get_size(gpu.memory_total)}")
    messages = [{"role": "user", "content": "Hello, how are you?"}]
    input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
    # with autocast():
    gen_tokens = model.generate(
    input_ids, 
    max_new_tokens=100, 
    # do_sample=True, 
    temperature=0.3,
    )

    gen_text = tokenizer.decode(gen_tokens[0])
    print(gen_text)
    yield gen_text
   
  
    messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

    # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

    # outputs = model.generate(inputs, max_new_tokens=2000)
    # gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
   
    # print(gen_text)
    # yield gen_text
    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    # response = ""

    # for message in client.chat_completion(
    #     messages,
    #     max_tokens=max_tokens,
    #     stream=True,
    #     temperature=temperature,
    #     top_p=top_p,
    # ):
    #     token = message.choices[0].delta.content

    #     response += token
    #     yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()