File size: 5,634 Bytes
93ed498 e2ec341 f4903ba 0d02f18 addc716 93ed498 b43bcfd 17749ab 93ed498 16e49b4 4ad0753 17749ab 58a3a72 23ab0e2 16e49b4 58a3a72 16e49b4 93ed498 6390b56 06cc7e1 b43bcfd 6390b56 ec7e05a 84d8cd6 d1b5796 b91461d d1b5796 54d537a 07d42bf 54d537a 29e7041 3ae4a47 d491d34 cac98b2 bd8e143 fcd9576 1f9eb44 3f5dc4a b91461d 0eaea57 c535860 29e7041 d972151 b5411ca 195b309 d491d34 4ad0753 3ae4a47 2d9088a 0d02f18 4ad0753 195b309 54d537a 93ed498 23ab0e2 58a3a72 ab6fbd7 126e605 ab6fbd7 d491d34 0373802 ab6fbd7 f4ca388 ab6fbd7 b5411ca d1b5796 84d8cd6 195b309 84d8cd6 ec7e05a 84d8cd6 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 6390b56 93ed498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
subprocess.run(
"pip install psutil",
shell=True,
)
subprocess.run(
"pip install pynvml gpustat",
shell=True,
)
def print_s1ystem():
ram_info = psutil.virtual_memory()
print(f"Total RAM: {ram_info.total / (1024.0 ** 3)} GB")
print(f"Available RAM: {ram_info.available / (1024.0 ** 3)} GB")
import psutil
import platform
import gpustat
from datetime import datetime
def get_size(bytes, suffix="B"):
factor = 1024
for unit in ["", "K", "M", "G", "T", "P"]:
if bytes < factor:
return f"{bytes:.2f}{unit}{suffix}"
bytes /= factor
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'
token=os.getenv('token')
print('token = ',token)
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "mistralai/Mistral-7B-v0.3"
model_id = "CohereForAI/aya-23-8B"
tokenizer = AutoTokenizer.from_pretrained(
# model_id
model_id
, token= token,)
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
# torch_dtype= torch.uint8,
torch_dtype=torch.float16,
# torch_dtype=torch.fl,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
device_map='cuda',
)
#
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })
# Load the model with the inferred device map
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
# model.half()
@spaces.GPU(duration=60)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
print_s1ystem()
uname = platform.uname()
print(f"System: {uname.system}")
print(f"Node Name: {uname.node}")
print(f"Release: {uname.release}")
print(f"Version: {uname.version}")
print(f"Machine: {uname.machine}")
print(f"Processor: {uname.processor}")
# GPU Information
gpu_stats = gpustat.GPUStatCollection.new_query()
for gpu in gpu_stats:
print(f"GPU: {gpu.name} Mem Free: {get_size(gpu.memory_free)} Mem Used: {get_size(gpu.memory_used)} Mem Total: {get_size(gpu.memory_total)}")
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
# with autocast():
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
# do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
yield gen_text
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
# outputs = model.generate(inputs, max_new_tokens=2000)
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(gen_text)
# yield gen_text
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |