Spaces:
Running
Running
## Imports | |
import os, time, argparse, base64, requests, os, json, sys, datetime | |
from itertools import product | |
import warnings | |
warnings.filterwarnings("ignore") | |
# import cv2 | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from torchvision.datasets import ImageNet | |
import torchvision.transforms as T | |
def readImg(p): | |
return Image.open(p) | |
def toImg(t): | |
return T.ToPILImage()(t) | |
def invtrans(mask, image, method = Image.BICUBIC): | |
return mask.resize(image.size, method) | |
def merge(mask, image, grap_scale = 200): | |
gray = np.ones((image.size[1], image.size[0], 3))*grap_scale | |
image_np = np.array(image).astype(np.float32)[..., :3] | |
mask_np = np.array(mask).astype(np.float32) | |
mask_np = mask_np / 255.0 | |
blended_np = image_np * mask_np[:, :, None] + (1 - mask_np[:, :, None]) * gray | |
blended_image = Image.fromarray((blended_np).astype(np.uint8)) | |
return blended_image | |
def normalize(mat, method = "max"): | |
if method == "max": | |
return (mat.max() - mat) / (mat.max() - mat.min()) | |
elif method == "min": | |
return (mat - mat.min()) / (mat.max() - mat.min()) | |
else: | |
raise NotImplementedError | |
def enhance(mat, coe=10): | |
mat = mat - mat.mean() | |
mat = mat / mat.std() | |
mat = mat * coe | |
mat = torch.sigmoid(mat) | |
mat = mat.clamp(0,1) | |
return mat | |
def revise_mask(patch_mask, kernel_size = 3, enhance_coe = 10): | |
patch_mask = normalize(patch_mask, "min") | |
patch_mask = enhance(patch_mask, coe = enhance_coe) | |
assert kernel_size % 2 == 1 | |
padding_size = int((kernel_size - 1) / 2) | |
conv = torch.nn.Conv2d(1,1,kernel_size = kernel_size, padding = padding_size, padding_mode = "replicate", stride = 1, bias = False) | |
conv.weight.data = torch.ones_like(conv.weight.data) / kernel_size**2 | |
conv.to(patch_mask.device) | |
patch_mask = conv(patch_mask.unsqueeze(0))[0] | |
mask = patch_mask | |
return mask | |
def blend_mask(image_path_or_pil_image, mask, enhance_coe, kernel_size, interpolate_method_name, grayscale): | |
mask = revise_mask(mask.float(), kernel_size = kernel_size, enhance_coe = enhance_coe) | |
mask = mask.detach().cpu() | |
mask = toImg(mask.reshape(1,24,24)) | |
if isinstance(image_path_or_pil_image, Image.Image): | |
image = image_path_or_pil_image | |
else: | |
raise NotImplementedError | |
interpolate_method = getattr(Image, interpolate_method_name) | |
mask = invtrans(mask, image, method = interpolate_method) | |
merged_image = merge(mask.convert("L"), image.convert("RGB"), grayscale).convert("RGB") | |
return merged_image |