## Imports import os, time, argparse, base64, requests, os, json, sys, datetime from itertools import product import warnings warnings.filterwarnings("ignore") # import cv2 from PIL import Image import numpy as np import torch from torch.nn import functional as F from torch.utils.data import DataLoader from torchvision.datasets import ImageNet import torchvision.transforms as T def readImg(p): return Image.open(p) def toImg(t): return T.ToPILImage()(t) def invtrans(mask, image, method = Image.BICUBIC): return mask.resize(image.size, method) def merge(mask, image, grap_scale = 200): gray = np.ones((image.size[1], image.size[0], 3))*grap_scale image_np = np.array(image).astype(np.float32)[..., :3] mask_np = np.array(mask).astype(np.float32) mask_np = mask_np / 255.0 blended_np = image_np * mask_np[:, :, None] + (1 - mask_np[:, :, None]) * gray blended_image = Image.fromarray((blended_np).astype(np.uint8)) return blended_image def normalize(mat, method = "max"): if method == "max": return (mat.max() - mat) / (mat.max() - mat.min()) elif method == "min": return (mat - mat.min()) / (mat.max() - mat.min()) else: raise NotImplementedError def enhance(mat, coe=10): mat = mat - mat.mean() mat = mat / mat.std() mat = mat * coe mat = torch.sigmoid(mat) mat = mat.clamp(0,1) return mat def revise_mask(patch_mask, kernel_size = 3, enhance_coe = 10): patch_mask = normalize(patch_mask, "min") patch_mask = enhance(patch_mask, coe = enhance_coe) assert kernel_size % 2 == 1 padding_size = int((kernel_size - 1) / 2) conv = torch.nn.Conv2d(1,1,kernel_size = kernel_size, padding = padding_size, padding_mode = "replicate", stride = 1, bias = False) conv.weight.data = torch.ones_like(conv.weight.data) / kernel_size**2 conv.to(patch_mask.device) patch_mask = conv(patch_mask.unsqueeze(0))[0] mask = patch_mask return mask def blend_mask(image_path_or_pil_image, mask, enhance_coe, kernel_size, interpolate_method_name, grayscale): mask = revise_mask(mask.float(), kernel_size = kernel_size, enhance_coe = enhance_coe) mask = mask.detach().cpu() mask = toImg(mask.reshape(1,24,24)) if isinstance(image_path_or_pil_image, Image.Image): image = image_path_or_pil_image else: raise NotImplementedError interpolate_method = getattr(Image, interpolate_method_name) mask = invtrans(mask, image, method = interpolate_method) merged_image = merge(mask.convert("L"), image.convert("RGB"), grayscale).convert("RGB") return merged_image