rombodawg's picture
Update app.py
f1125eb verified
raw
history blame
5.09 kB
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL = "fblgit/cybertron-v4-qw7B-MGS"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TITLE = """
<h1><center>fblgit_cybertron-v4-qw7B-MGS</center></h1>
<center>
<p>The model is licensed under apache 2.0</p>
</center>
"""
PLACEHOLDER = """
<center>
<p>fblgit_cybertron-v4-qw7B-MGS</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL, use_fast=False, force_download=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
ignore_mismatched_sizes=True,
force_download=True)
def format_chat(system_prompt, history, message):
formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
for prompt, answer in history:
formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n"
formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
return formatted_chat
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.3,
max_new_tokens: int = 256,
top_p: float = 1.0,
top_k: int = 20,
repetition_penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
formatted_prompt = format_chat(system_prompt, history, message)
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=5000.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs.input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
if "<|endoftext|>" in buffer:
yield buffer.split("<|endoftext|>")[0]
break
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are cybertron-v4-qw7B-MGS, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.1,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=8192,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=50,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Code the classic game 'snake' in python, using the pygame library for graphics."],
["Use math to solve for x in the following math problem: 4x − 7 (2 − x) = 3x + 2"],
["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."],
["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()