Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,090 Bytes
73f6e79 7c0ddf5 73f6e79 473d783 73f6e79 473d783 73f6e79 f1125eb 73f6e79 f1125eb 73f6e79 f1125eb 73f6e79 f1125eb 73f6e79 7c0ddf5 73f6e79 f1125eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL = "fblgit/cybertron-v4-qw7B-MGS"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TITLE = """
<h1><center>fblgit_cybertron-v4-qw7B-MGS</center></h1>
<center>
<p>The model is licensed under apache 2.0</p>
</center>
"""
PLACEHOLDER = """
<center>
<p>fblgit_cybertron-v4-qw7B-MGS</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL, use_fast=False, force_download=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
ignore_mismatched_sizes=True,
force_download=True)
def format_chat(system_prompt, history, message):
formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
for prompt, answer in history:
formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n"
formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
return formatted_chat
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.3,
max_new_tokens: int = 256,
top_p: float = 1.0,
top_k: int = 20,
repetition_penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
formatted_prompt = format_chat(system_prompt, history, message)
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=5000.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs.input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
if "<|endoftext|>" in buffer:
yield buffer.split("<|endoftext|>")[0]
break
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are cybertron-v4-qw7B-MGS, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.1,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=8192,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=50,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Code the classic game 'snake' in python, using the pygame library for graphics."],
["Use math to solve for x in the following math problem: 4x − 7 (2 − x) = 3x + 2"],
["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."],
["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|