rahulvenkk
app.py updated
6dfcb0f
raw
history blame
24.4 kB
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.ops import batched_nms, masks_to_boxes
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from mask2former.modeling.criterion import SetCriterion
from mask2former.modeling.matcher import HungarianMatcher
import modeling_pretrain as vmae_tranformers
import matplotlib.pyplot as plt
from detectron2.utils.visualizer import Visualizer
import os
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets import register_coco_instances
root = os.path.expanduser(os.getenv("DETECTRON2_DATASETS", "datasets"))
register_coco_instances("cls_agnostic_coco", {},
os.path.join(root, "coco/annotations/coco_cls_agnostic_instances_val2017.json"),
os.path.join(root, "coco/val2017")
)
@META_ARCH_REGISTRY.register()
class CWMSegmentPredictorV2(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
criterion: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
output_dir: str,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.criterion = criterion
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
# Load CWM predictor
self.output_dir = output_dir
if 'cwm' in output_dir:
model_func = vmae_tranformers.base_8x8patch_2frames_1tube_flash
predictor = model_func().cuda()
load_path = '/ccn2/u/feigelis/model_checkpoints/kevin_checkpoints/' + \
'fulltrain_kinetics_8x8patch_rotated_table_distributed_with_ddp' + \
'_copied_from_oldnode/checkpoint-3199.pth'
did_load = predictor.load_state_dict(torch.load(load_path, map_location=torch.device("cpu"))['model'])
print('Load CWM pretrained predictor', did_load)
self.predictor = predictor.eval().requires_grad_(False)
self.num_patches = self.predictor.encoder.num_patches
self.patch_size = self.predictor.encoder.patch_size[-1]
self.mask_ratio = 0.99
num_hidden_layers = 4
hidden_dim = 1024
input_dim = self.predictor.decoder.embed_dim
decoder_layers = [torch.nn.Linear(input_dim, hidden_dim), torch.nn.ReLU()]
for i in range(num_hidden_layers):
decoder_layers.append(torch.nn.Linear(hidden_dim, hidden_dim))
decoder_layers.append(torch.nn.ReLU())
decoder_layers.append(torch.nn.Linear(hidden_dim, num_queries))
self.decoder = torch.nn.Sequential(*decoder_layers).cuda()
@classmethod
def from_config(cls, cfg):
# Loss parameters:
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
# building criterion
matcher = HungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
weight_dict = {"loss_mask": mask_weight, "loss_dice": dice_weight}
losses = ["masks"]
criterion = SetCriterion(
num_classes=80,
matcher=matcher,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
)
return {
"criterion": criterion,
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": (
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
"output_dir": cfg.OUTPUT_DIR,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
###
# image_size = images.image_sizes[0]
# processed_results = []
# input_per_image = batched_inputs[0]
# height = input_per_image.get("height", image_size[0])
# width = input_per_image.get("width", image_size[1])
#
# gt_instances = [x["instances"] for x in batched_inputs]
# targets = []
# for targets_per_image in gt_instances:
# # pad gt
# try:
# gt_masks = targets_per_image.gt_masks
# except:
# print('NO GT MASKS')
# gt_masks = torch.zeros(1, height, width)
#
# targets.append(
# {
# "labels": targets_per_image.gt_classes,
# "masks": gt_masks,
# }
# )
#
# mask_cls_results = torch.ones(1, self.num_queries, 81)#.to(self.device)
# mask_pred_result = targets[0]['masks']#.to(self.device)
#
# processed_results.append({})
# if self.instance_on:
# instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_results[0], mask_pred_result)
# processed_results[-1]["instances"] = instance_r
# return processed_results
###
with torch.cuda.amp.autocast(enabled=True):
with torch.no_grad():
if not self.training:
# resize to patch size
x = F.interpolate(images.tensor, size=(224, 224), mode="bilinear", align_corners=False)
x = x.to(torch.float16).unsqueeze(2).expand(-1, -1, 2, -1, -1)
else:
x = images.tensor.to(torch.float16).unsqueeze(2).expand(-1, -1, 2, -1, -1)
# mask out the second frame
mask = torch.zeros([x.shape[0], self.num_patches]).to(x.device).bool()
mask[:, int(self.num_patches // 2):] = 1
# num_visibles = int((1 - self.mask_ratio) * int(self.num_patches // 2)) + 1
# rand_idx = torch.randint(low=int(self.num_patches//2), high=self.num_patches, size=(x.shape[0], int(num_visibles)))
# for i in range(x.shape[0]):
# mask[i, rand_idx[i]] = 0
feature = self.predictor.encoder(x, mask=mask)
feature = self.predictor.encoder_to_decoder(feature)
# out = self.predictor(x, mask)
logits = self.decoder(feature).float()
B, N, _ = logits.shape
pred_masks = logits.view(B, int(N ** 0.5), int(N ** 0.5), self.num_queries).permute(0, 3, 1,
2) # [B, num_queries, H, W]
outputs = {"pred_masks": pred_masks}
if self.training:
# mask classification target
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances, images)
else:
targets = None
# bipartite matching-based loss
losses = self.criterion(outputs, targets)
for k in list(losses.keys()):
if k in self.criterion.weight_dict:
losses[k] *= self.criterion.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses.pop(k)
return losses
else:
# mask_cls_results = outputs["pred_logits"]
mask_cls_results = torch.ones(x.shape[0], self.num_queries, 81).to(self.device)
mask_pred_results = outputs["pred_masks"]
# upsample masks
mask_pred_results = F.interpolate(
mask_pred_results,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
# if "instances" in batched_inputs[0]:
# gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
# targets = self.prepare_targets(gt_instances, images)
# else:
# targets = None
del outputs
processed_results = []
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip(
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
processed_results.append({})
if self.sem_seg_postprocess_before_inference:
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
mask_pred_result, image_size, height, width
)
mask_cls_result = mask_cls_result.to(mask_pred_result)
# semantic segmentation inference
if self.semantic_on:
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result)
if not self.sem_seg_postprocess_before_inference:
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
processed_results[-1]["sem_seg"] = r
# panoptic segmentation inference
if self.panoptic_on:
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["panoptic_seg"] = panoptic_r
# instance segmentation inference
if self.instance_on:
instance_r, nms_idx = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result)
processed_results[-1]["instances"] = instance_r
# Visualization
'''
rgb_image = F.interpolate(images.tensor.float(), size=(height, width), mode='bilinear')
visualizer = Visualizer(rgb_image.cpu().detach()[0].permute(1,2,0))
visualizer = visualizer.draw_instance_predictions(instance_r)
recon = torch.zeros(1, self.num_patches, self.patch_size ** 2 * 3)
recon[mask] = out.float().cpu().detach()
recon = self.unpatchify(recon[:, int(self.num_patches // 2):])
recon = recon[0].permute(1, 2, 0).float().clamp(0, 1)
# fig, axs = plt.subplots(1, 7, figsize=(20, 3))
#
# axs[0].imshow(images.tensor.float()[0].permute(1, 2, 0).cpu().detach())
# axs[1].imshow(images.tensor.float()[0].permute(1, 2, 0).cpu().detach())
# # axs[1].imshow(batched_inputs[0]['instances'].gt_masks.argmax(0))
# axs[2].imshow(recon)
# axs[3].imshow(feature[0].view(28, 28, -1)[..., 0:3].cpu().detach().float())
# axs[4].imshow(feature[0].view(28, 28, -1)[..., 100:103].cpu().detach().float())
# axs[5].imshow(feature[0].view(28, 28, -1)[..., 200:203].cpu().detach().float())
# axs[6].imshow(visualizer.get_image())
file_name = batched_inputs[0]['file_name'].split('/')[-1].split('.jpg')[0]
# for a in axs:
# a.set_axis_off()
fig, axs = plt.subplots(1, 2, figsize=(16, 6))
axs[0].imshow(images.tensor.float()[0].permute(1, 2, 0).cpu().detach())
axs[1].imshow(visualizer.get_image())
plt.savefig(f"/ccn2/u/honglinc/temp/{file_name}.png", bbox_inches='tight')
fig, axs = plt.subplots(10, 10, figsize=(10, 10))
for a in axs:
for _a in a:
_a.set_axis_off()
for i in range(mask_pred_result.shape[0]):
# print(mask_pred_result.shape, height, width)
mask_area_ratio = mask_pred_result[i].sigmoid().float().flatten().sum() / (height * width)
axs[i // 10, i % 10].imshow(mask_pred_result[i].cpu().detach() > 0)
nms = 1 if i in nms_idx else -1
axs[i // 10, i % 10].set_title(f'{mask_area_ratio.item():.2f}, {nms}', fontsize=11)
plt.savefig(f"/ccn2/u/honglinc/temp/{file_name}_mask.png", bbox_inches='tight')
'''
return processed_results
def prepare_targets(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for targets_per_image in targets:
# pad gt
gt_masks = targets_per_image.gt_masks
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
new_targets.append(
{
"labels": targets_per_image.gt_classes,
"masks": padded_masks,
}
)
return new_targets
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
mask_pred = mask_pred.sigmoid()
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def instance_inference(self, mask_cls, mask_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
mask_area_ratio = (mask_pred > 0).float().flatten(1, 2).sum(1) / (image_size[0] * image_size[1])
mask_area_filter = (mask_area_ratio > 0.01) & (mask_area_ratio < 0.9)
mask_pred = mask_pred[mask_area_filter]
original_idx = torch.arange(mask_area_filter.shape[0])[mask_area_filter]
try:
box = masks_to_boxes(mask_pred > 0)
scores = (mask_pred.sigmoid().flatten(1) * (mask_pred > 0).flatten(1)).sum(1) / (
(mask_pred > 0).flatten(1).sum(1) + 1e-6)
nms_idx = batched_nms(box, scores, torch.zeros(box.shape[0]).long(), 0.3)
mask_pred = mask_pred[nms_idx]
box = box[nms_idx]
except Exception as e:
import pdb;
pdb.set_trace()
print(e, mask_pred.shape, mask_area_filter.sum())
box = torch.zeros(mask_pred.shape[0], 4).to(mask_pred)
nms_idx = original_idx[nms_idx]
mask_pred = mask_pred.cpu()
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
result.pred_boxes = Boxes(box.cpu())
# Uncomment the following to get boxes from masks (this is slow)
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (
result.pred_masks.flatten(1).sum(1) + 1e-6)
scores_per_image = torch.ones(mask_pred.size(0)).to(mask_pred.device)
labels_per_image = torch.zeros(mask_pred.size(0)).to(mask_pred.device)
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result, nms_idx
def unpatchify(self, x):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = self.patch_size
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs