File size: 34,625 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e8833a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dfcb0f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
from functools import partial
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_ as __call_trunc_normal_

from cwm.data.masking_generator import RotatedTableMaskingGenerator
from cwm.model.model_utils import Block, _cfg, PatchEmbed, get_sinusoid_encoding_table
import cwm.eval.Flow.masking_flow as masking
import cwm.utils as utils
# from external.raft_interface import RAFTInterface
import cwm.eval.Flow.generator as generator
import matplotlib.pyplot as plt
import torch.nn.functional as F
from cwm.eval.Flow import flow_utils
import cwm.model.keypoint_utils as keypoint_utils

def trunc_normal_(tensor, mean=0., std=1.):
    __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)


def interpolate_pos_encoding(pos_embed, n_frames, h, w):
    N = pos_embed.shape[1]
    if N == (h * w * n_frames):
        return pos_embed
    old_h = old_w = int((N / n_frames) ** 0.5)
    patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2)

    patch_pos_embed = F.interpolate(
        patch_pos_embed,
        size=(h, w),
        mode='bilinear',
    )
    return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0)


class PretrainVisionTransformerEncoder(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, num_classes=0, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, tubelet_size=2,
                 num_frames=16, block_func=Block, k_bias=False, use_learnable_pos_emb=False, block_kwargs={}):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.patch_size = (tubelet_size,) + patch_size
        self.pt, self.ph, self.pw = self.patch_size
        self.h = int(img_size / self.ph)
        self.w = int(img_size / self.pw)
        self.hw = self.h * self.w
        self.dims = [self.h, self.w]

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            tubelet_size=tubelet_size,
            num_frames=num_frames
        )
        num_patches = self.patch_embed.num_patches

        self.num_patches = num_patches
        self.num_frames = num_frames

        if use_learnable_pos_emb:
            self.use_learnable_pos_emb = True
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.pos_embed, std=.02)
        else:
            # sine-cosine positional embeddings
            self.use_learnable_pos_emb = False
            self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            block_func(
                dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate,
                drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, **block_kwargs, k_bias=k_bias,
                xla_flash=True)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def _get_pos_embed(self):
        return self.pos_embed

    def forward_block(self, x, idx):
        return self.blocks[idx](x)

    def forward_features(self, x, mask, move_pos=None, static_pos=None, movement=None, res=1):

        T = x.shape[2]

        x = embed = self.patch_embed(x)
        pos_embed = self._get_pos_embed().type_as(x).to(x.device).clone()

        if not self.use_learnable_pos_emb:
            pos_embed = pos_embed.detach()

        if res != 1:
            print("res")
            p0 = self.patch_size[-2]
            p1 = self.patch_size[-1]
            pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(224 // p0 * res), int(224 // p1 * res))

        x = x + pos_embed
        B, _, C = x.shape
        x_vis = x[~mask].reshape(B, -1, C)  # ~mask means visible

        if move_pos is not None:
            h, w = self.h, self.w
            first_frame_emb = embed[:, :self.hw].view(B, h, w, C)  # [B, h, w, C]
            last_frame_pos_emb = pos_embed[:, -self.hw:].view(1, h, w, C).expand(B, -1, -1, -1)  # [B, h, w, C]
            denominator = torch.tensor([self.h, self.w]).view(1, 1, 2).to(x.device)

            new_pos = move_pos + movement  # [B, P, 2]
            move_pos = move_pos / denominator * 2 - 1
            new_pos = (new_pos / denominator).clamp(0, 1) * 2 - 1  # handle special case where new_pos is out of bounds
            static_pos = static_pos / denominator * 2 - 1

            moving_emb = utils.sample_embedding(first_frame_emb, move_pos, mode='nearest')  # [B, P, C]
            moving_pos_emb = utils.sample_embedding(last_frame_pos_emb, new_pos, mode='nearest')  # [B, P, C]

            static_emb = utils.sample_embedding(first_frame_emb, static_pos, mode='nearest')  # [B, P, C]
            static_pos_emb = utils.sample_embedding(last_frame_pos_emb, static_pos, mode='nearest')  # [B, P, C]

            x_vis = torch.cat([x_vis, moving_emb + moving_pos_emb, static_emb + static_pos_emb], dim=1)

            # assert B == 1, "Only support batch size 1 for now"
            # for (px, py) in move_patches:
            #     idx = px * self.w + py
            #     dx, dy = delta
            #     nx, ny = px + dx, py + dy
            #     new_idx = nx * self.w + ny + (self.patch_embed.num_frames - 1) * (self.h * self.w)
            #
            #     emb = embed[:, idx]
            #     pos_emb = pos_embed[:, new_idx]
            #     emb = emb + pos_emb
            #     x_vis = torch.cat([x_vis, emb[None]], 1)

            # if static_patches is not None:
            #     for (px, py) in static_patches:
            #         idx = px * self.w + py
            #         new_idx = px * self.w + py + (self.patch_embed.num_frames - 1) * (self.h * self.w)
            #         emb = embed[:, idx]
            #         pos_emb = pos_embed[:, new_idx]
            #         emb = emb + pos_emb
            #         x_vis = torch.cat([x_vis, emb[None]], 1)

        for blk in self.blocks:
            x_vis = blk(x_vis)

        x_vis = self.norm(x_vis)
        return x_vis

    def _set_inputs(self, *args, **kwargs):
        pass

    def forward(self, x, mask, move_pos=None, static_pos=None, movement=None, res=1):

        self._set_inputs(x, mask)
        x = self.forward_features(x, mask, move_pos, static_pos, movement, res=res)
        x = self.head(x)
        return x


class PretrainVisionTransformerDecoder(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """

    def __init__(self, patch_size=(16, 16), num_classes=768, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, block_func=Block, block_kwargs={},
                 k_bias=False
                 ):
        super().__init__()

        self.num_classes = num_classes

        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.patch_size = patch_size

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            block_func(
                dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values, **block_kwargs, k_bias=k_bias,
                xla_flash=True)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)
        self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_block(self, x, idx):
        return self.blocks[idx](x)

    def get_last_tokens(self, x, return_token_num):
        if return_token_num > 0:
            return self.head(self.norm(x[:, -return_token_num:]))
        elif return_token_num == 0:
            return self.head(self.norm(x))[:, x.size(1):]
        else:
            return self.head(self.norm(x))

    def forward(self, x, return_token_num):
        for blk in self.blocks:
            x = blk(x)

        if return_token_num > 0:
            x = self.head(self.norm(x[:, -return_token_num:]))  # only return the mask tokens predict pixels
        else:
            x = self.head(self.norm(x))

        return x


class PretrainVisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    default_input_kwargs = {'unnormalize': True}

    def __init__(self,
                 img_size=224,
                 patch_size=(16, 16),
                 encoder_func=PretrainVisionTransformerEncoder,
                 encoder_in_chans=3,
                 encoder_num_classes=0,
                 encoder_embed_dim=768,
                 encoder_depth=12,
                 encoder_num_heads=12,
                 encoder_block_func=Block,
                 encoder_block_kwargs={},
                 decoder_num_classes=None,
                 # For pretraining this parameter isn't relevant but must be set according to tube&patch size
                 decoder_embed_dim=512,
                 decoder_depth=8,
                 decoder_num_heads=8,
                 decoder_block_func=Block,
                 decoder_block_kwargs={},
                 mlp_ratio=4.,
                 qkv_bias=False,
                 k_bias=False,
                 qk_scale=None,
                 num_frames=16,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer=nn.LayerNorm,
                 init_values=0.,
                 tubelet_size=2,
                 use_flash_attention=False,
                 use_learnable_pos_emb=False,
                 **kwargs
                 ):
        super().__init__()

        encoder_block_kwargs.update({'flash_attention': use_flash_attention})
        decoder_block_kwargs.update({'flash_attention': use_flash_attention})

        self.tubelet_size = tubelet_size
        num_classes = 3 * tubelet_size * (
                    patch_size[0] * patch_size[1]) if decoder_num_classes is None else decoder_num_classes

        self.encoder = encoder_func(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=encoder_in_chans,
            num_classes=encoder_num_classes,
            embed_dim=encoder_embed_dim,
            depth=encoder_depth,
            num_heads=encoder_num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            drop_rate=drop_rate,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            norm_layer=norm_layer,
            init_values=init_values,
            tubelet_size=tubelet_size,
            num_frames=num_frames,
            block_func=encoder_block_func,
            block_kwargs=encoder_block_kwargs,
            use_learnable_pos_emb=use_learnable_pos_emb,
            k_bias=k_bias,
            **kwargs)

        self.decoder = PretrainVisionTransformerDecoder(
            patch_size=patch_size,
            num_classes=num_classes,
            embed_dim=decoder_embed_dim,
            depth=decoder_depth,
            num_heads=decoder_num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            drop_rate=drop_rate,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            norm_layer=norm_layer,
            init_values=init_values,
            block_func=decoder_block_func,
            k_bias=k_bias,
            block_kwargs=decoder_block_kwargs)

        self.encoder_to_decoder = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=k_bias)

        self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
        trunc_normal_(self.mask_token, std=.02)

        if use_learnable_pos_emb:
            self.use_learnable_pos_emb = True
            self.pos_embed = nn.Parameter(torch.zeros(self.encoder.num_patches, decoder_embed_dim))
            trunc_normal_(self.pos_embed, std=.02)
        else:
            self.use_learnable_pos_emb = False
            self.pos_embed = get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim)

        self.num_frames = num_frames
        self.num_patches = self.encoder.num_patches

        if self.num_frames is not None:
            self.num_patches_per_frame = self.num_patches // self.num_frames
        else:
            self.num_patches_per_frame = self.num_patches

        self.patch_size = self.encoder.patch_size

        if isinstance(img_size, int):
            self.image_size = (img_size, img_size)
        else:
            assert hasattr(img_size, '__len__'), img_size
            self.image_size = img_size

        # self.flow_interface = RAFTInterface()

    @property
    def mask_size(self):
        return (self.num_frames // self.patch_size[0],
                self.image_size[-2] // self.patch_size[-2],
                self.image_size[-1] // self.patch_size[-1])

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.xavier_uniform_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token', 'mask_token'}

    def adjust_input_resolution(self, H, W):
        if self.image_size == [H, W]:
            return

        patch_size = self.encoder.patch_size[-2:]
        self.image_size = [H, W]
        self.encoder.h = int(H / self.encoder.ph)
        self.encoder.w = int(W / self.encoder.pw)
        self.encoder.hw = self.encoder.h * self.encoder.w
        self.encoder.dims = [self.encoder.h, self.encoder.w]
        dims = [int(s / p) for s, p in zip(self.image_size, patch_size)]
        self.encoder.pos_embed = utils.interpolate_pos_encoding(self.encoder.pos_embed, 3, dims[0], dims[1])
        print('pos_embed', self.encoder.pos_embed.shape)
        self.pos_embed = utils.interpolate_pos_encoding(self.pos_embed, 3, dims[0], dims[1])

    def forward(self, x, mask, forward_full=False, return_features=False, res=1, *args, **kwargs):

        _, _, T, _, _ = x.shape
        self.device = x.device

        num_patches_per_frame = (x.shape[-1] // self.encoder.patch_size[1]) ** 2

        x_vis = self.encoder(x, mask, res=res, *args, **kwargs)

        if return_features:
            return x_vis

        x_vis = self.encoder_to_decoder(x_vis)  # [B, N_vis, C_d]
        B, N, C = x_vis.shape

        # add pos embedding
        # if res != 1:
        #     p0 = self.patch_size[-2]
        #     p1 = self.patch_size[-1]
        #     pos_embed = interpolate_pos_encoding(self.pos_embed.unsqueeze(0), T, int(224 // p0 * res), int(224 // p1 * res))
        # else:
        #     pos_embed = self.pos_embed.unsqueeze(0)

        expand_pos_embed = self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone()

        if not self.use_learnable_pos_emb:
            expand_pos_embed = expand_pos_embed.detach()

        pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C)
        pos_emd_mask = expand_pos_embed[mask].reshape(B, -1, C)

        nctx = num_patches_per_frame * (self.num_frames - 1)

        x_vis = x_vis + pos_emd_vis

        x_full = torch.cat([x_vis, self.mask_token + pos_emd_mask], dim=1)  # [B, N, C_d]

        if forward_full:
            x_full = torch.cat([x_vis, self.mask_token + expand_pos_embed[:, nctx:]], dim=1)  # [B, N, C_d]
            x_all = self.decoder(x_full, num_patches_per_frame)
            x = x_all
        else:
            x = self.decoder(x_full, pos_emd_mask.shape[1])  # [B, N_mask, 3 * 16 * 16]

        return x

    def get_counterfactual(self, x, move_patches):
        '''
        :param x: input tensor [1, C, T, H, W]: support only batch size 1 for now
        :param move_patches: torch tensor [N, 4] sized array where each row contains patch motion [x1, y1, x2, y2] in pixel coordinates
        :return:
        '''
        B, _, T, H, H  = x.shape

        mask = torch.ones(B, self.encoder.hw * self.encoder.num_frames).to(x.device).bool()
        mask[:, :self.encoder.hw * (self.encoder.num_frames - 1)] = False

        move_patches = (move_patches/H)*self.encoder.h
        move_patches = move_patches.to(torch.int64)

        for x1, y1, x2, y2 in move_patches:
            idx2 = x2*self.encoder.w + y2 + (self.encoder.num_frames - 1) * (self.encoder.h * self.encoder.w)
            mask[:, idx2] = False
            im_x1 = x1*self.encoder.ph
            im_y1 = y1*self.encoder.pw
            im_x2 = x2*self.encoder.ph
            im_y2 = y2*self.encoder.pw
            x[:, :, -1, im_x2:im_x2+self.encoder.ph, im_y2:im_y2+self.encoder.pw] = x[:, :, -2, im_x1:im_x1+self.encoder.ph, im_y1:im_y1+self.encoder.pw]

        prediction = self.forward(x, mask, forward_full=True)

        prediction = utils.unpatchify_cwm(
            prediction,
            patch_size=self.encoder.patch_size[-1],
        )  # reshape the output to an image

        return prediction


    def get_directional_counterfactual(self, x, mask=None, move_pos=None, static_pos=None, movement=None, max_movement=None):
        B, _, T, _, _ = x.shape

        if mask is None:  # default mask: all visible but the last frame
            mask = torch.ones(B, self.encoder.hw * self.encoder.num_frames).to(x.device).bool()
            mask[:, :self.encoder.hw * (self.encoder.num_frames - 1)] = False

        if movement is None:  # generate random motion if movement is not specified
            assert max_movement is not None and move_pos is not None
            movement = torch.randint(-max_movement, max_movement, move_pos.shape).to(x.device)  # [B, num_samples, 2]

        x_vis = self.encoder(x, mask, move_pos=move_pos, static_pos=static_pos, movement=movement)  # [B, N_vis, C_e]
        x_vis = self.encoder_to_decoder(x_vis)  # [B, N_vis, C_d]
        B, N, C = x_vis.shape
        expand_pos_embed = self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach()
        pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C)

        if move_pos is not None:
            h, w = self.encoder.h, self.encoder.w
            last_frame_pos_emb = expand_pos_embed[:, -(h * w):].view(B, h, w, C)  # [B, h, w, C]

            # compute new locations of the moved patche, snormalize positions to range [-1, 1]
            new_pos = move_pos + movement  # [B, P, 2]
            denominator = torch.tensor([h, w]).view(1, 1, 2).to(x.device)
            new_pos = (new_pos / denominator).clamp(0, 1) * 2 - 1
            static_pos = static_pos / denominator * 2 - 1

            # sample the position embeddings of the moved and static patches
            moving_pos_emb = utils.sample_embedding(last_frame_pos_emb, new_pos, mode='nearest')  # [B, P, C]
            static_pos_emb = utils.sample_embedding(last_frame_pos_emb, static_pos, mode='nearest')  # [B, P, C]

            # concatenate with the position embeddings to the visible patches
            pos_emd_vis = torch.cat([pos_emd_vis, moving_pos_emb, static_pos_emb], dim=1)

            # assert B == 1, "Only support batch size 1 for now"
            # offset = (self.encoder.patch_embed.num_frames - 1) * (self.encoder.h * self.encoder.w)
            # for (px, py) in move_patches:
            #     dx, dy = delta
            #     nx, ny = px + dx, py + dy
            #     new_idx = nx * self.encoder.w + ny + offset
            #     pos_emb = expand_pos_embed[:, new_idx]
            #     pos_emd_vis = torch.cat([pos_emd_vis, pos_emb[None]], 1)
            #
            # if static_patches is not None:
            #     for (px, py) in static_patches:
            #         new_idx = px * self.encoder.w + py + offset
            #         pos_emb = expand_pos_embed[:, new_idx]
            #         pos_emd_vis = torch.cat([pos_emd_vis, pos_emb[None]], 1)

        pos_emd_mask = expand_pos_embed[mask].reshape(B, -1, C)
        x_vis = x_vis + pos_emd_vis
        x_full = torch.cat([x_vis, self.mask_token + pos_emd_mask], dim=1)  # [B, N, C_d]
        x = self.decoder(x_full, pos_emd_mask.shape[1])  # [B, N_mask, 3 * 16 * 16]

        prediction = utils.unpatchify_cwm(
            x,
            patch_size=self.encoder.patch_size[-1],
            mask=mask[:, -self.encoder.hw:]
        )  # reshape the output to an image

        return prediction


    @torch.no_grad()
    def get_segment(self, x, mask=None, sampling_dist=None, num_segments=1, num_iters=4, num_samples=4, max_movement=4,
                    vis=True):
        B, C, T, H, W = x.shape
        N = num_samples
        patch_size = self.encoder.patch_size[-1]

        self.adjust_input_resolution(H, W)

        # ## Step 0: define the sampling distribution for moving and static locations
        # if sampling_dist is None:
        #     sampling_dist = utils.get_dino_predominance(x[:, :, 0], dims=self.encoder.dims, img_size=self.image_size)[0]
        #     sampling_dist = F.interpolate(sampling_dist, self.encoder.dims, mode='bilinear', align_corners=False)
        #     sampling_dist = sampling_dist.squeeze(1) ** 4
        #
        #     if vis:
        #         print('sampling_dist', sampling_dist.shape)
        #         plt.imshow(sampling_dist[0].cpu().numpy())
        #         plt.title(f'Sampling distribution (max:{sampling_dist.max():.3f})')
        #         plt.show()

        ## Step 1: sample initial moving and static locations from the distribution
        init_move_pos, init_static_pos, init_flow_mag, max_score = None, None, None, 0

        # Sample multiple positions for each segment and select the one with consistent outputs
        for _ in range(N):
            # sample one moving position per example in the batch
            move_pos = utils.sample_positions_from_dist(size=[1, 1], dist=sampling_dist).repeat(N, 1, 1)  # [BN, 1, 2]

            # each move position has N static positions and movement directions
            static_pos = utils.sample_positions_from_dist(size=[B * N, 1], dist=-sampling_dist)  # [BN, 1, 2]

            ## compute initial flow maps
            _x = x.repeat(N, 1, 1, 1, 1)  # [BN, C, T, H, W]
            pred = self.get_directional_counterfactual(_x, move_pos=move_pos, static_pos=static_pos, max_movement=max_movement)
            flow, flow_mag = self.flow_interface(_x[:, :, 0].float(), pred.clamp(0, 1).float(), return_magnitude=True)
            flow_mag = flow_mag.view(B, N, H, W)
            scores = flow_mag.flatten(2, 3).std(dim=1).mean(-1)  # [B, N]
            print('scores', scores, flow_mag.shape)
            if scores.mean(-1) > max_score:
                init_move_pos, init_static_pos, init_flow_mag, max_score = move_pos, static_pos, flow_mag, scores

            # visualize samples
            if vis:
                fig, axs = plt.subplots(1, num_samples, figsize=(2 * num_samples, 2 * num_samples))

                for i in range(num_samples):
                    move = move_pos[i, 0].cpu()
                    static = static_pos[i, 0].cpu()
                    flow_rgb = utils.flow_to_rgb(flow[i].cpu().permute(1, 2, 0))
                    axs[i].imshow(flow_rgb)
                    axs[i].scatter(move[1] * patch_size, move[0] * patch_size, color='green', s=20)
                    axs[i].set_axis_off()
                    axs[i].scatter(static[1] * patch_size, static[0] * patch_size, color='red', s=20)
                fig.subplots_adjust(wspace=0.01, hspace=0.01)  # Change these values to adjust space

                plt.show()
                plt.close()

        ## Step 2: iteratively add more moving and static locations to refine the segment
        prev_flow_mag = init_flow_mag
        prev_move_pos = init_move_pos
        prev_static_pos = init_static_pos
        npos_per_iter = 1
        for it in range(num_iters):
            print('Iteration', it)
            sampling_dist = F.interpolate(prev_flow_mag, size=self.encoder.dims, mode='bilinear').mean(1)
            # sample one moving position per example in the batch
            move_pos = utils.sample_positions_from_dist(size=[1, npos_per_iter], dist=sampling_dist).repeat(N, 1, 1)
            move_pos = torch.cat([prev_move_pos, move_pos], dim=1)

            # each move position has N static positions and movement directions
            static_pos = utils.sample_positions_from_dist(size=[B * N, npos_per_iter],
                                                          dist=-sampling_dist)  # [BN, 1, 2]
            static_pos = torch.cat([prev_static_pos, static_pos], dim=1)

            pred = self.get_directional_counterfactual(_x, move_pos=move_pos, static_pos=static_pos, max_movement=max_movement)
            flow, flow_mag = self.flow_interface(_x[:, :, 0].float(), pred.clamp(0, 1).float(), return_magnitude=True)
            flow_mag = flow_mag.view(B, N, H, W)
            scores = flow_mag.flatten(2, 3).std(dim=1).mean(-1)  # [B, N]
            print('scores', scores, flow_mag.shape)
            if scores.mean(-1) > max_score:
                init_move_pos, init_static_pos, init_flow_mag, max_score = move_pos, static_pos, flow_mag, scores

            # visualize samples
            if vis:
                fig, axs = plt.subplots(1, num_samples, figsize=(2 * num_samples, 2 * num_samples))

                for i in range(num_samples):
                    flow_rgb = utils.flow_to_rgb(flow[i].cpu().permute(1, 2, 0))

                    axs[i].imshow(flow_rgb)
                    axs[i].set_axis_off()
                    for k in range(move_pos.shape[1]):
                        move = move_pos[i, k].cpu()
                        static = static_pos[i, k].cpu()
                        axs[i].scatter(move[1] * patch_size, move[0] * patch_size, color='green', s=20)
                        axs[i].scatter(static[1] * patch_size, static[0] * patch_size, color='red', s=20)
                fig.subplots_adjust(wspace=0.01, hspace=0.01)  # Change these values to adjust space

                plt.show()
                plt.close()

        ## Step 3: iterate to add more moving and static motions
        return None

    @torch.no_grad()
    def get_flow(self, img1, img2, conditioning_img=None, mode='jacobian', perturbation_patch_size=8, aggregation_patch_size=8,  mask_ratio=0.0, num_scales=1, num_mask_samples=1):
        '''
        :param img1: input image 1 [B, C, H, W]
        :param img2: input image 2 [B, C, H, W]
        :param mode: which flow extraction method to use: 'jacobian' or 'optical_flow
        :param mask_ratio: what frame2 mask ratio to use when extracting flow
        :return: forward flow [B, 2, H, W]
        '''



        if mode == 'jacobian':
            frame_size = 224 // self.patch_size[-1]
            DFG = generator.DerivativeFlowGenerator(
                predictor=self,
                perturbation_patch_size=perturbation_patch_size,
                aggregation_patch_size=aggregation_patch_size,
                agg_power=None,
                agg_channel_func=lambda x: F.relu(x.sum(-3, True)),
                num_samples=5,
                average_jacobian=False,
                leave_one_out_sampling=False,
                imagenet_normalize_inputs=False,
                temporal_dim=2,
                confidence_thresh=None
            ).to(img1.device)

            maskgen_uniform = masking.PytorchMaskGeneratorWrapper(
                mask_generator=masking.RotatedTableMaskingGenerator,
                input_size=(self.num_frames, frame_size, frame_size),
                mask_ratio=mask_ratio
            ).to(img1.device)


            jac_fwd, forward_flow = flow_utils.extract_jacobians_and_flows(img1, img2,
                                                            DFG,
                                                            maskgen_uniform()[None])

        else:
            frame_size = 224 // self.patch_size[-1]
            mask_generator = RotatedTableMaskingGenerator(
                input_size=(self.num_frames, frame_size, frame_size),
                mask_ratio=mask_ratio,
                tube_length=1,
                batch_size=1,
                mask_type='rotated_table'
            )

            forward_flow, _ = flow_utils.scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed(self, mask_generator, img1, img2, conditioning_img=conditioning_img, num_scales=num_scales, N_mask_samples=num_mask_samples)

        return forward_flow

    @torch.no_grad()
    def get_keypoints(self, img1, img2, img3=None, num_keypoints=10, samples_per_keypoint=1):
        '''
        :param img1: input image 1 [B, C, H, W] imagenet normalized
        :param img2: input image 2 [B, C, H, W] imagenet normalized
        :param num_keypoints: number of keypoints to extract
        :param samples_per_keypoint: number of samples per keypoint
        '''
        if self.num_frames == 2:
            x = torch.stack([img1, img2], dim=2)
        else:
            if img3 is None:
                x = torch.stack([img1, img1, img2], dim=2)
            else:
                x = torch.stack([img1, img2, img3], dim=2)

        mask, choices, err_array, feat, keypoint_recon = keypoint_utils.get_keypoints_batch(self, x, samples_per_keypoint, num_keypoints)

        return mask, choices, err_array, feat, keypoint_recon

def pretrain_vit_base_224_scaffold(img_size=224, **kwargs):
    model = PretrainVisionTransformer(
        img_size=img_size,
        encoder_embed_dim=768,
        encoder_depth=12,
        encoder_num_heads=12,
        encoder_num_classes=0,
        decoder_embed_dim=512,
        decoder_num_heads=16,
        decoder_depth=8,
        mlp_ratio=4,
        qkv_bias=True,
        k_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs)
    model.default_cfg = _cfg()
    return model


def pretrain_videomae_base_224_scaffold(**kwargs):
    model = PretrainVisionTransformer(
        img_size=224,
        encoder_embed_dim=768,
        encoder_depth=12,
        encoder_num_heads=12,
        encoder_num_classes=0,
        decoder_embed_dim=384,
        decoder_num_heads=6,
        decoder_depth=4,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs)
    model.default_cfg = _cfg()
    return model


def vitb_8x8patch_3frames(**kwargs):
    model = pretrain_vit_base_224_scaffold(
        patch_size=(8, 8),
        num_frames=3,
        tubelet_size=1,
        use_flash_attention=True,
        **kwargs)
    return model


def vitb_8x8patch_2frames(**kwargs):
    model = pretrain_vit_base_224_scaffold(
        patch_size=(8, 8),
        num_frames=2,
        tubelet_size=1,
        use_flash_attention=True,
        **kwargs)
    return model

def vitb_8x8patch_2frames_vmae(**kwargs):
    model = pretrain_videomae_base_224_scaffold(
        patch_size=(8, 8),
        num_frames=2,
        tubelet_size=1,
        use_flash_attention=True,
        **kwargs)
    return model

def vitb_4x4patch_2frames(**kwargs):
    model = pretrain_videomae_base_224_scaffold(
        patch_size=(4, 4),
        num_frames=2,
        tubelet_size=1,
        **kwargs)
    return model

from cwm.model.modeling_pretrain_cleaned_soft import pretrain_vit_base_256_scaffold

def vitb_8x8patch_2frames_encoder_mask_token(
        use_flash_attention=False, **kwargs):
    model = pretrain_vit_base_256_scaffold(
        patch_size=(8, 8),
        num_frames=2,
        tubelet_size=1,
        use_flash_attention=use_flash_attention,
        interp_noise=False,
        legacy=False,
        xla_flash=False,
        learn_pos_embed=True,
        **kwargs)
    return model


# def base_8x8patch_2frames_1tube(**kwargs):
#     model = pretrain_videomae_base_224_scaffold(
#         patch_size=(8, 8),
#         num_frames=2,
#         tubelet_size=1,
#         **kwargs)
#     return model