File size: 13,422 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms

def upsample_masks(masks, size, thresh=0.5):
    shape = masks.shape
    dtype = masks.dtype
    h, w = shape[-2:]
    H, W = size
    if (H == h) and (W == w):
        return masks
    elif (H < h) and (W < w):
        s = (h // H, w // W)
        return masks[..., ::s[0], ::s[1]]

    masks = masks.unsqueeze(-2).unsqueeze(-1)
    masks = masks.repeat(*([1] * (len(shape) - 2)), 1, H // h, 1, W // w)
    if ((H % h) == 0) and ((W % w) == 0):
        masks = masks.view(*shape[:-2], H, W)
    else:
        _H = np.prod(masks.shape[-4:-2])
        _W = np.prod(masks.shape[-2:])
        masks = transforms.Resize(size)(masks.view(-1, 1, _H, _W)) > thresh
        masks = masks.view(*shape[:2], H, W).to(masks.dtype)
    return masks




def partition_masks(masks, num_samples=2, leave_one_out=False):
    B = masks.shape[0]
    S = num_samples
    masks = masks.view(B, -1)
    partitioned = [torch.ones_like(masks) for _ in range(S)]
    for b in range(B):
        vis_inds = torch.where(~masks[b])[0]
        vis_inds = vis_inds[torch.randperm(vis_inds.size(0))]
        if leave_one_out:
            for s in range(S):
                partitioned[s][b][vis_inds] = 0
                partitioned[s][b][vis_inds[s::S]] = 1
        else:
            for s in range(S):
                partitioned[s][b][vis_inds[s::S]] = 0
    return partitioned


class RectangularizeMasks(nn.Module):
    """Make sure all masks in a batch have same number of 1s and 0s"""

    def __init__(self, truncation_mode='min'):
        super().__init__()
        self._mode = truncation_mode
        assert self._mode in ['min', 'max', 'mean', 'full', 'none', None], (self._mode)

    def set_mode(self, mode):
        self._mode = mode

    def __call__(self, masks):

        if self._mode in ['none', None]:
            return masks

        assert isinstance(masks, torch.Tensor), type(masks)
        if self._mode == 'full':
            return torch.ones_like(masks)

        shape = masks.shape
        masks = masks.flatten(1)
        B, N = masks.shape
        num_masked = masks.float().sum(-1)
        M = {
            'min': torch.amin, 'max': torch.amax, 'mean': torch.mean
        }[self._mode](num_masked).long()

        num_changes = num_masked.long() - M

        for b in range(B):
            nc = num_changes[b]
            if nc > 0:
                inds = torch.where(masks[b])[0]
                inds = inds[torch.randperm(inds.size(0))[:nc].to(inds.device)]
                masks[b, inds] = 0
            elif nc < 0:
                inds = torch.where(~masks[b])[0]
                inds = inds[torch.randperm(inds.size(0))[:-nc].to(inds.device)]
                masks[b, inds] = 1
        if list(masks.shape) != list(shape):
            masks = masks.view(*shape)

        return masks


class UniformMaskingGenerator(object):
    def __init__(self, input_size, mask_ratio, seed=None, clumping_factor=1, randomize_num_visible=False):
        self.frames = None
        if len(input_size) == 3:
            self.frames, self.height, self.width = input_size
        elif len(input_size) == 2:
            self.height, self.width = input_size
        elif len(input_size) == 1 or isinstance(input_size, int):
            self.height = self.width = input_size

        self.clumping_factor = clumping_factor
        self.pad_h = self.height % self.c[0]
        self.pad_w = self.width % self.c[1]
        self.num_patches_per_frame = (self.height // self.c[0]) * (self.width // self.c[1])
        self.mask_ratio = mask_ratio

        self.rng = np.random.RandomState(seed=seed)
        self.randomize_num_visible = randomize_num_visible

    @property
    def num_masks_per_frame(self):
        if not hasattr(self, '_num_masks_per_frame'):
            self._num_masks_per_frame = int(self.mask_ratio * self.num_patches_per_frame)
        return self._num_masks_per_frame

    @num_masks_per_frame.setter
    def num_masks_per_frame(self, val):
        self._num_masks_per_frame = val
        self._mask_ratio = (val / self.num_patches_per_frame)

    @property
    def c(self):
        if isinstance(self.clumping_factor, int):
            return (self.clumping_factor, self.clumping_factor)
        else:
            return self.clumping_factor[:2]

    @property
    def mask_ratio(self):
        return self._mask_ratio

    @mask_ratio.setter
    def mask_ratio(self, val):
        self._mask_ratio = val
        self._num_masks_per_frame = int(self._mask_ratio * self.num_patches_per_frame)

    @property
    def num_visible(self):
        return self.num_patches_per_frame - self.num_masks_per_frame

    @num_visible.setter
    def num_visible(self, val):
        self.num_masks_per_frame = self.num_patches_per_frame - val

    def __repr__(self):
        repr_str = "Mask: total patches per frame {}, mask patches per frame {}, mask ratio {}, random num num visible? {}".format(
            self.num_patches_per_frame, self.num_masks_per_frame, self.mask_ratio, self.randomize_num_visible
        )
        return repr_str

    def sample_mask_per_frame(self):
        num_masks = self.num_masks_per_frame
        if self.randomize_num_visible:
            num_masks = self.rng.randint(low=num_masks, high=(self.num_patches_per_frame + 1))
        mask = np.hstack([
            np.zeros(self.num_patches_per_frame - num_masks),
            np.ones(num_masks)])
        self.rng.shuffle(mask)
        if max(*self.c) > 1:
            mask = mask.reshape(self.height // self.c[0],
                                1,
                                self.width // self.c[1],
                                1)
            mask = np.tile(mask, (1, self.c[0], 1, self.c[1]))
            mask = mask.reshape((self.height - self.pad_h, self.width - self.pad_w))
            _pad_h = self.rng.choice(range(self.pad_h + 1))
            pad_h = (self.pad_h - _pad_h, _pad_h)
            _pad_w = self.rng.choice(range(self.pad_w + 1))
            pad_w = (self.pad_w - _pad_w, _pad_w)
            mask = np.pad(mask,
                          (pad_h, pad_w),
                          constant_values=1
                          ).reshape((self.height, self.width))
        return mask

    def __call__(self, num_frames=None):
        num_frames = (num_frames or self.frames) or 1
        masks = np.stack([self.sample_mask_per_frame() for _ in range(num_frames)]).flatten()
        return masks


class TubeMaskingGenerator(UniformMaskingGenerator):

    def __call__(self, num_frames=None):
        num_frames = (num_frames or self.frames) or 1
        masks = np.tile(self.sample_mask_per_frame(), (num_frames, 1)).flatten()
        return masks


class RotatedTableMaskingGenerator(TubeMaskingGenerator):

    def __init__(self, tube_length=None, *args, **kwargs):
        super(RotatedTableMaskingGenerator, self).__init__(*args, **kwargs)
        self.tube_length = tube_length

    def __call__(self, num_frames=None):
        num_frames = (num_frames or self.frames) or 2
        tube_length = self.tube_length or (num_frames - 1)
        table_thickness = num_frames - tube_length
        assert tube_length < num_frames, (tube_length, num_frames)

        tubes = super().__call__(num_frames=tube_length)
        top = np.zeros(table_thickness * self.height * self.width).astype(tubes.dtype).flatten()
        masks = np.concatenate([top, tubes], 0)
        return masks


class PytorchMaskGeneratorWrapper(nn.Module):
    """Pytorch wrapper for numpy masking generators"""

    def __init__(self,
                 mask_generator=TubeMaskingGenerator,
                 *args, **kwargs):
        super().__init__()
        self.mask_generator = mask_generator(*args, **kwargs)

    @property
    def mask_ratio(self):
        return self.mask_generator.mask_ratio

    @mask_ratio.setter
    def mask_ratio(self, value):
        self.mask_generator.mask_ratio = value

    def forward(self, device='cuda', dtype_out=torch.bool, **kwargs):
        masks = self.mask_generator(**kwargs)
        masks = torch.tensor(masks).to(device).to(dtype_out)
        return masks


class MaskingGenerator(nn.Module):
    """Pytorch base class for masking generators"""

    def __init__(self,
                 input_size,
                 mask_ratio,
                 seed=0,
                 visible_frames=0,
                 clumping_factor=1,
                 randomize_num_visible=False,
                 create_on_cpu=True,
                 always_batch=False):
        super().__init__()
        self.frames = None

        if len(input_size) == 3:
            self.frames, self.height, self.width = input_size
        elif len(input_size) == 2:
            self.height, self.width = input_size
        elif len(input_size) == 1 or isinstance(input_size, int):
            self.height = self.width = input_size

        self.clumping_factor = clumping_factor
        self.pad_h = self.height % self.c[0]
        self.pad_w = self.width % self.c[1]
        self.num_patches_per_frame = (self.height // self.c[0]) * (self.width // self.c[1])

        self.mask_ratio = mask_ratio
        self.visible_frames = visible_frames
        self.always_batch = always_batch
        self.create_on_cpu = create_on_cpu

        self.rng = np.random.RandomState(seed=seed)
        self._set_torch_seed(seed)

        self.randomize_num_visible = randomize_num_visible

    @property
    def num_masks_per_frame(self):
        if not hasattr(self, '_num_masks_per_frame'):
            self._num_masks_per_frame = int(self.mask_ratio * self.num_patches_per_frame)
        return self._num_masks_per_frame

    @num_masks_per_frame.setter
    def num_masks_per_frame(self, val):
        self._num_masks_per_frame = val
        self._mask_ratio = (val / self.num_patches_per_frame)

    @property
    def c(self):
        if isinstance(self.clumping_factor, int):
            return (self.clumping_factor,) * 2
        else:
            return self.clumping_factor[:2]

    @property
    def mask_ratio(self):
        return self._mask_ratio

    @mask_ratio.setter
    def mask_ratio(self, val):
        self._mask_ratio = val
        self._num_masks_per_frame = int(self._mask_ratio * self.num_patches_per_frame)

    @property
    def num_visible(self):
        return self.num_patches_per_frame - self.num_masks_per_frame

    @num_visible.setter
    def num_visible(self, val):
        self.num_masks_per_frame = self.num_patches_per_frame - val

    def _set_torch_seed(self, seed):
        self.seed = seed
        torch.manual_seed(self.seed)

    def __repr__(self):
        repr_str = ("Class: {}\nMask: total patches per mask {},\n" + \
                    "mask patches per mask {}, visible patches per mask {}, mask ratio {:0.3f}\n" + \
                    "randomize num visible? {}").format(
            type(self).__name__, self.num_patches_per_frame,
            self.num_masks_per_frame, self.num_visible, self.mask_ratio,
            self.randomize_num_visible
        )
        return repr_str

    def sample_mask_per_frame(self, *args, **kwargs):
        num_masks = self.num_masks_per_frame
        if self.randomize_num_visible:
            num_masks = self.rng.randint(low=num_masks, high=(self.num_patches_per_frame + 1))

        mask = torch.cat([
            torch.zeros([self.num_patches_per_frame - num_masks]),
            torch.ones([num_masks])], 0).bool()
        inds = torch.randperm(mask.size(0)).long()
        mask = mask[inds]

        if max(*self.c) > 1:
            mask = mask.view(self.height // self.c[0],
                             1,
                             self.width // self.c[1],
                             1)
            mask = torch.tile(mask, (1, self.c[0], 1, self.c[1]))
            mask = mask.reshape(self.height - self.pad_h, self.width - self.pad_w)
            _pad_h = self.rng.choice(range(self.pad_h + 1))
            pad_h = (self.pad_h - _pad_h, _pad_h)
            _pad_w = self.rng.choice(range(self.pad_w + 1))
            pad_w = (self.pad_w - _pad_w, _pad_w)
            mask = F.pad(mask,
                         pad_w + pad_h,
                         mode='constant',
                         value=1)
            mask = mask.reshape(self.height, self.width)

        return mask

    def forward(self, x=None, num_frames=None):

        num_frames = (num_frames or self.frames) or 1
        if isinstance(x, torch.Tensor):
            batch_size = x.size(0)
            masks = torch.stack([
                torch.cat([self.sample_mask_per_frame() for _ in range(num_frames)], 0).flatten()
                for b in range(batch_size)], 0)
            if not self.create_on_cpu:
                masks = masks.to(x.device)
            if batch_size == 1 and not self.always_batch:
                masks = masks.squeeze(0)
        else:
            batch_size = 1
            masks = torch.cat([self.sample_mask_per_frame() for _ in range(num_frames)], 0).flatten()
            if self.always_batch:
                masks = masks[None]

        if self.visible_frames > 0:
            vis = torch.zeros((batch_size, 1, self.height, self.width), dtype=torch.bool)
            vis = vis.view(masks.shape).to(masks.device)
            masks = torch.cat(([vis] * self.visible_frames) + [masks], -1)

        return masks