File size: 5,922 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed(generator,
                                                              mask_generator,
                                                              img1,
                                                              img2,
                                                              neg_back_flow=True,
                                                              num_scales=1,
                                                              min_scale=400,
                                                              N_mask_samples=100,
                                                              mask_ratio=0.8,
                                                              smoothing_factor=1):
    B = img1.shape[0]
    assert len(img1.shape) == 4
    assert num_scales >= 1

    # For scaling
    h1 = img2.shape[-2]
    w1 = img2.shape[-1]
    assert min_scale < h1 and min_scale >= 360  # Below 360p, the flows look terrible

    if neg_back_flow is False:
        print('WARNING: Not calculating negative backward flow')

    alpha = (min_scale / img1.shape[-2]) ** (1 / (num_scales - 1)) if num_scales > 1 else 1

    frame_size = 224 // generator.patch_size[-1]

    all_fwd_flows_e2d = []

    s_hs = []
    s_ws = []

    for aidx in range(num_scales):
        print(aidx)

        # print('aidx: ', aidx)

        img1_scaled = F.interpolate(img1.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
                                    mode='bicubic', align_corners=True)
        img2_scaled = F.interpolate(img2.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
                                    mode='bicubic', align_corners=True)

        h2 = img2_scaled.shape[-2]
        w2 = img2_scaled.shape[-1]

        s_h = h1 / h2
        s_w = w1 / w2

        s_hs.append(s_h)
        s_ws.append(s_w)

        # Because technically the compute_optical_flow function returns neg back flow
        if neg_back_flow is True:
            video = torch.cat([img2_scaled.unsqueeze(1), img1_scaled.unsqueeze(1)], 1)
        else:
            video = torch.cat([img1_scaled.unsqueeze(1), img2_scaled.unsqueeze(1)], 1)

        # Should work, even if the incoming video is already 224x224
        crops1, c_pos1 = get_minimal_224_crops_new_batched(video, 1)

        num_crops = len(crops1)

        crop_flows_enc = []
        crop_flows_enc2dec = []
        N_samples = N_mask_samples

        crop = torch.cat(crops1, 0).cuda()

        optical_flows_enc2dec = torch.zeros(B * num_crops, 2, frame_size, frame_size).cuda()
        mask_counts = torch.zeros(frame_size, frame_size).cuda()

        i = 0
        while i < N_samples or (mask_counts == 0).any().item():
            if i % 100 == 0:
                pass  # print(i)
            mask_generator.mask_ratio = mask_ratio

            # This would be that every sample has the same mask. For now that's okay I think
            mask = mask_generator()[None]
            mask_2f = ~mask[0, frame_size * frame_size:]
            mask_counts += mask_2f.reshape(frame_size, frame_size)

            with torch.cuda.amp.autocast(enabled=True):

                processed_x = generator._preprocess(crop)

                encoder_out = generator.predictor.encoder(processed_x.to(torch.float16), mask.repeat(B * num_crops, 1))
                encoder_to_decoder = generator.predictor.encoder_to_decoder(encoder_out)

                optical_flow_e2d = []
                # one per batch element for now
                for b in range(B * num_crops):
                    batch_flow = compute_optical_flow(encoder_to_decoder[b].unsqueeze(0), mask, frame_size)
                    optical_flow_e2d.append(average_crops(batch_flow, smoothing_factor).unsqueeze(0))

                optical_flow_e2d = torch.cat(optical_flow_e2d, 0)
                optical_flows_enc2dec += optical_flow_e2d
            i += 1

        optical_flows_enc2dec = optical_flows_enc2dec / mask_counts

        # split the crops back up
        crop_flows_enc2dec = optical_flows_enc2dec.split(B, 0)

        T1 = [F.interpolate(_, [int(224), int(224)], mode='bicubic', align_corners=True).unsqueeze(1).cpu() for _ in
              crop_flows_enc2dec]

        optical_flows_enc2dec_joined = reconstruct_video_new_2_batched(T1, c_pos1, (
        B, 1, 2, video.shape[-2], video.shape[-1])).squeeze(1)

        all_fwd_flows_e2d.append(optical_flows_enc2dec_joined)

    all_fwd_flows_e2d_new = []

    for ridx, r in enumerate(all_fwd_flows_e2d):
        # print('ridx', ridx)
        # print('sh', s_hs[ridx])
        # print('sw', s_ws[ridx])
        # print('scale_fac y', scale_ys[ridx])
        # print('scale_fac x', scale_xs[ridx])

        _sh = s_hs[ridx]
        _sw = s_ws[ridx]
        _sfy = generator.patch_size[-1]
        _sfx = generator.patch_size[-1]

        # plt.figure(figsize=(20, 20))

        # plt.subplot(1,3,1)
        # plt.imshow(f2rgb(-r).cpu().numpy()[0].transpose(1,2,0))

        # plt.subplot(1,3,2)
        new_r = F.interpolate(r, [int(all_fwd_flows_e2d[0].shape[-2]), int(all_fwd_flows_e2d[0].shape[-1])],
                              mode='bicubic', align_corners=True)
        # plt.imshow(f2rgb(-new_r).cpu().numpy()[0].transpose(1,2,0))

        scaled_new_r = torch.zeros_like(new_r)
        scaled_new_r[:, 0, :, :] = new_r[:, 0, :, :] * _sfx * _sw
        scaled_new_r[:, 1, :, :] = new_r[:, 1, :, :] * _sfy * _sh

        # plt.subplot(1,3,3)
        # plt.imshow(f2rgb(-scaled_new_r).cpu().numpy()[0].transpose(1,2,0))

        # plt.show()

        all_fwd_flows_e2d_new.append(scaled_new_r.unsqueeze(-1))
    return_flow = torch.cat(all_fwd_flows_e2d_new, -1).mean(-1)

    if neg_back_flow is True:
        return_flow = -return_flow
        all_fwd_flows_e2d_new = [-_ for _ in all_fwd_flows_e2d_new]

    return return_flow, all_fwd_flows_e2d_new