File size: 26,565 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import datetime
import io
import os
import random
import sys
import time
from collections import defaultdict, deque
from pathlib import Path

import matplotlib
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.utils import get_state_dict
from torch import inf

# sys.path.append(os.path.join(os.environ['HOME'], '.cache/torch/CutLER'))
# sys.path.append(os.path.join(os.environ['HOME'], '.cache/torch/CutLER/maskcut'))
# sys.path.append(os.path.join(os.environ['HOME'], '.cache/torch/CutLER/third_party'))
# import dino
# from maskcut import get_affinity_matrix, second_smallest_eigenvector, get_salient_areas, check_num_fg_corners, get_masked_affinity_matrix
#
# #from maskcut import get_affinity_matrix, second_smallest_eigenvector, get_salient_areas, check_num_fg_corners
# # DINO hyperparameters
# global dino_backbone
# dino_backbone = None

def patchify(x, tubelet_size, patch_size):
    '''
    :param x: [B, C, T, H, W]
    :param tubelet_size: 2
    :param patch_size: (8, 8)
    :return:
    '''
    videos_squeeze = rearrange(x,
                               'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c',
                               p0=tubelet_size,
                               p1=patch_size[0],
                               p2=patch_size[1])

    videos_patch = rearrange(videos_squeeze, 'b n p c -> b n (p c)')

    return videos_patch

def imagenet_unnormalize(x, temporal_dim=2):
    device = x.device

    if len(x.shape) == 3:
        if x.shape[0] == 3: # "channel_first"
            mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[:, None, None].to(x)
            std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[:, None, None].to(x)
        else: # channel_last
            mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :].to(x)
            std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :].to(x)
    elif len(x.shape) == 4:
        mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None].to(x)
        std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None].to(x)
    elif len(x.shape) == 5:
        mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x)
        std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x)

        if temporal_dim == 2:
            mean = mean.transpose(1,2)
            std = std.transpose(1,2)

    return x * std + mean

def imagenet_normalize(x, temporal_dim=2):
    device = x.device

    if len(x.shape) == 3:
        if x.shape[0] == 3: # "channel_first"
            mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[:, None, None].to(x)
            std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[:, None, None].to(x)
        else: # channel_last
            mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :].to(x)
            std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :].to(x)
    elif len(x.shape) == 4:
        mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None].to(x)
        std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None].to(x)
    elif len(x.shape) == 5:
        mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x)
        std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x)

        if temporal_dim == 2:
            mean = mean.transpose(1,2)
            std = std.transpose(1,2)

    return (x - mean) / std

def sinusoidal_embedding(x, n_freq=5, keep_ori=True):
    """
    create sin embedding for 3d vectors
    input:
        x: *x3
        n_freq: number of raised frequency
    """

    shape = list(x.shape)
    assert x.shape[-1] == 3, "expect the last dimension to have size 3"
    x = x.reshape(-1, 3)

    embedded = []
    if keep_ori:
        embedded.append(x)
    emb_fns = [torch.sin, torch.cos]
    freqs = 2. ** torch.linspace(0., n_freq - 1, steps=n_freq)
    for freq in freqs:
        for emb_fn in emb_fns:
            embedded.append(emb_fn(freq * x))
    embedded = torch.cat(embedded, dim=-1)
    C = embedded.shape[-1]
    embedded = embedded.reshape(shape[:-1] + [C])
    return embedded

class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def update2(self, kwargs):
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)
            

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ''
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.2f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.6f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))





def seed_worker(worker_id):
    worker_seed = torch.initial_seed() % 2**32
    np.random.seed(worker_seed)
    random.seed(worker_seed)
    
def _load_checkpoint_for_ema(model_ema, checkpoint):
    """
    Workaround for ModelEma._load_checkpoint to accept an already-loaded object
    """
    mem_file = io.BytesIO()
    torch.save(checkpoint, mem_file)
    mem_file.seek(0)
    model_ema._load_checkpoint(mem_file)


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
    args.distributed = True
    args.rank = int(os.environ["RANK"])
    args.gpu = int(os.environ['LOCAL_RANK'])
    args.world_size = int(os.environ['WORLD_SIZE'])
    args.dist_backend = 'nccl'
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
    missing_keys = []
    unexpected_keys = []
    error_msgs = []
    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(
            state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(model, prefix=prefix)

    warn_missing_keys = []
    ignore_missing_keys = []
    for key in missing_keys:
        keep_flag = True
        for ignore_key in ignore_missing.split('|'):
            if ignore_key in key:
                keep_flag = False
                break
        if keep_flag:
            warn_missing_keys.append(key)
        else:
            ignore_missing_keys.append(key)

    missing_keys = warn_missing_keys

    if len(missing_keys) > 0:
        print("Weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, missing_keys))
    if len(unexpected_keys) > 0:
        print("Weights from pretrained model not used in {}: {}".format(
            model.__class__.__name__, unexpected_keys))
    if len(ignore_missing_keys) > 0:
        print("Ignored weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, ignore_missing_keys))
    if len(error_msgs) > 0:
        print('\n'.join(error_msgs))


class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        # breakpoint()
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
    return total_norm


def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
                     start_warmup_value=0, warmup_steps=-1):
    warmup_schedule = np.array([])
    warmup_iters = warmup_epochs * niter_per_ep
    if warmup_steps > 0:
        warmup_iters = warmup_steps
    if warmup_epochs > 0:
        warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)

    iters = np.arange(epochs * niter_per_ep - warmup_iters)
    iter_per_len = iters/len(iters)    
    schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iter_per_len))    
    # schedule = np.array(
    #     [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])

    schedule = np.concatenate((warmup_schedule, schedule))

    assert len(schedule) == epochs * niter_per_ep
    return schedule


def get_model_num_parameters(model):

    num_parameters = sum([v.numel() for v in model.parameters() if v.requires_grad])

    human_readable_fn = lambda num: \
        f'{num / 1e9:.3f} B' if num >= 1e9 else f'{num / 1e6:.3f} M' \
            if num >= 1e6 else f'{num / 1e3:.3f} K' if num >= 1e3 else str(num)
    num_parameters_str = human_readable_fn(num_parameters)

    return num_parameters, num_parameters_str

def save_model(args, epoch, model, optimizer, loss_scaler, model_ema=None):
    output_dir = Path(args.output_dir)
    epoch_name = str(epoch)
    if loss_scaler is not None:
        checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]
        for checkpoint_path in checkpoint_paths:
            to_save = {
                'model': model.module.state_dict(),
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'scaler': loss_scaler.state_dict(),
                'args': args,
            }

            if model_ema is not None:
                to_save['model_ema'] = get_state_dict(model_ema)

            save_on_master(to_save, checkpoint_path)
    else:
        client_state = {'epoch': epoch}
        if model_ema is not None:
            client_state['model_ema'] = get_state_dict(model_ema)
        model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)


def auto_load_model(args, model, optimizer, loss_scaler, model_ema=None, global_rank=None):
    output_dir = Path(args.output_dir)
    if loss_scaler is not None:
        # torch.amp
        if len(args.resume) == 0:
            import glob
            if global_rank is None:
                all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
            else:
                all_checkpoints = glob.glob(os.path.join(output_dir, f'checkpoint-*-rank-{global_rank}.pth'))
            latest_ckpt = -1
            for ckpt in all_checkpoints:
                if global_rank is None:
                    t = ckpt.split('-')[-1].split('.')[0]
                else:
                    t = ckpt.split('checkpoint-')[1].split('-')[0]
                if t.isdigit():
                    latest_ckpt = max(int(t), latest_ckpt)
            if latest_ckpt >= 0:
                if global_rank is None:
                    args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
                else:
                    args.resume = os.path.join(output_dir, 'checkpoint-%d-rank-%d.pth' % (latest_ckpt, global_rank))
            if args.resume:
                print("Auto resume checkpoint: %s" % args.resume)

        if args.resume:
            if args.resume.startswith('https'):
                checkpoint = torch.hub.load_state_dict_from_url(
                    args.resume, map_location='cpu', check_hash=True)
            else:
                checkpoint = torch.load(args.resume, map_location='cpu')
            model.module.load_state_dict(checkpoint['model'])
            print("Resume checkpoint %s" % args.resume)
            if 'optimizer' in checkpoint and 'epoch' in checkpoint:
                optimizer.load_state_dict(checkpoint['optimizer'])
                args.start_epoch = checkpoint['epoch'] + 1
                if hasattr(args, 'model_ema') and args.model_ema:
                    _load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
                if 'scaler' in checkpoint:
                    loss_scaler.load_state_dict(checkpoint['scaler'])

    else:
        # deepspeed, only support '--auto_resume'.
        import glob
        all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
        latest_ckpt = -1
        for ckpt in all_checkpoints:
            t = ckpt.split('-')[-1].split('.')[0]
            if t.isdigit():
                latest_ckpt = max(int(t), latest_ckpt)
        if latest_ckpt >= 0:
            args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
            print("Auto resume checkpoint: %d" % latest_ckpt)
            _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
            args.start_epoch = client_states['epoch'] + 1
            if model_ema is not None:
                if args.model_ema:
                    _load_checkpoint_for_ema(model_ema, client_states['model_ema'])

def unpatchify(x, patch_size):
    """
    x: (N, L, patch_size**2*3)
    imgs: (N, 3, H, W)
    """
    p = patch_size
    h = w = int(x.shape[1] ** .5)
    assert h * w == x.shape[1]

    x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
    x = torch.einsum('nhwpqc->nchpwq', x)
    imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
    return imgs

def unpatchify_cwm(x, patch_size, mask=None):
    """
    x: (N, L, patch_size**2 *3)
    imgs: (N, 3, H, W)
    """
    if mask is not None:
        h = w = int(mask.shape[1] ** .5)
        recon = torch.zeros(x.shape[0], h*w, x.shape[-1]).to(x)
        recon[mask] = x.flatten(0, 1)
    else:
        h = w = int(x.shape[1] ** .5)
        recon = x

    p = patch_size
    assert h * w == recon.shape[1]

    recon = recon.reshape(shape=(recon.shape[0], h, w, p, p, 3))
    recon = torch.einsum('nhwpqc->nchpwq', recon)
    imgs = recon.reshape(shape=(recon.shape[0], 3, h * p, h * p))
    return imgs


def sample_embedding(embedding, pos, mode='bilinear'):
    """
    Sample embedding tensor at specified positions
    embedding: [B, H, W, C]
    pos: [B, P, 2] (convention: first dim is row, second dim is column)
    """
    embedding = embedding.permute(0, 3, 1, 2) # [B, C, H, W]
    device = embedding.device
    # grid_sampling assues first value to be column-dimension, second value to be row-dimension
    pos = pos.flip(dims=(-1,))
    assert pos.min() >= -1 and pos.max() <= 1, "grid sampling expect to be in range [-1, 1]"

    return F.grid_sample(embedding, pos[:, None].to(device), mode=mode).squeeze(-2).permute(0, 2, 1)  # [B, P, C]


def sample_positions_from_dist(size, dist):
    """
    Samples positions from a given unnormalized probability distribution.

    Parameters:
    num (int): The number of samples to draw for each distribution in the batch.
    dist (torch.Tensor): A float tensor of shape [B, H, W] representing the unnormalized
                         probability distributions for B batches each of length N.

    Returns:
    torch.Tensor: A tensor of shape [B, num] containing the sampled positions.
    """
    assert dist.dim() == 3, "dist should be a 3D tensor with shape [B, H, W]."
    assert len(size) == 2, "size should be a 2D tuple (batch_size, num_samples)"
    B, H, W = dist.shape

    new_B, num_samples = size

    if dist.min() < 0:
        dist -= dist.min()

    # Flatten the last two dimensions to make it [B, H*W]
    flattened_dist = dist.view(B, -1)

    # Sample indices according to the normalized distribution
    sampled_indices = torch.multinomial(flattened_dist, new_B * num_samples, replacement=True)

    # Convert the flattened indices back to 2D indices
    sampled_row_indices = sampled_indices // W
    sampled_col_indices = sampled_indices % W

    # Stack the row and column indices
    samples = torch.stack((sampled_row_indices, sampled_col_indices), dim=-1)
    samples = samples.view(new_B, num_samples, 2)

    return samples
#
# def get_dino_predominance(images, dims=[28, 28], current_mask=None, painting=None, img_size=[224, 224]):
#     global dino_backbone
#     if dino_backbone is None:
#         vit_arch = 'base'
#         vit_feat = 'k'
#         patch_size = 8
#         # DINO pre-trained model
#         url = "https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
#         feat_dim = 768
#         dino_backbone = dino.ViTFeat(url, feat_dim, vit_arch, vit_feat, patch_size)
#         dino_backbone = dino_backbone.eval().requires_grad_(False).cuda()
#
#     input_dino = images
#     # input_dino = input_dino - torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(input_dino.device)
#     # input_dino = input_dino / torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(input_dino.device)
#     # input_dino = images.tensor
#     input_dino = torch.nn.functional.interpolate(input_dino, size=img_size, mode='bilinear')
#     features = dino_backbone(input_dino)
#
#     predominence_map = []
#
#     for i in range(features.shape[0]):
#         feats = features[i]
#         if current_mask == None:
#             painting = torch.from_numpy(np.zeros(dims))
#             painting = painting.to(feats)
#         else:
#             feats, painting = get_masked_affinity_matrix(painting, feats, current_mask, ps=dims[0])
#
#         A, D = get_affinity_matrix(feats, tau=0.15)
#         # get the second-smallest eigenvector
#         _, second_smallest_vec = second_smallest_eigenvector(A, D)
#         # get salient area
#         bipartition = get_salient_areas(second_smallest_vec)
#
#         # check if we should reverse the partition based on:
#         # 1) peak of the 2nd smallest eigvec 2) object centric bias
#         seed = np.argmax(np.abs(second_smallest_vec))
#         nc = check_num_fg_corners(bipartition, dims)
#         if nc >= 2:
#             reverse = True
#         else:
#             reverse = bipartition[seed] != 1
#         if reverse:
#             second_smallest_vec = 1 - second_smallest_vec
#         second_smallest_vec = torch.tensor(second_smallest_vec).to(images.device).contiguous()
#         map = torch.nn.functional.interpolate(second_smallest_vec.reshape(1, 1, dims[0], dims[1]), size=img_size,
#                                               mode='bilinear')
#         map -= map.min()
#         map /= map.max()
#         predominence_map.append(map)
#     init_dist = torch.cat(predominence_map, dim=0).detach()
#     return init_dist, A, feats, painting


def interpolate_pos_encoding(pos_embed, n_frames, h, w):
    N = pos_embed.shape[1]
    if N == (h * w * n_frames):
        return pos_embed
    old_h = old_w = int((N / n_frames) ** 0.5)
    patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2)

    patch_pos_embed = F.interpolate(
        patch_pos_embed,
        size=(h, w),
        mode='bicubic',
    )
    return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0)


def flow_to_rgb(vec, flow_mag_range=None, white_bg=False):
    height, width = vec.shape[:2]
    scaling = 50. / (height**2 + width**2)**0.5
    direction = (np.arctan2(vec[..., 0], vec[..., 1]) + np.pi) / (2 * np.pi)
    norm = np.linalg.norm(vec, axis=-1)
    if flow_mag_range is None:
        flow_mag_range = norm.min(), norm.max()
        magnitude = np.clip((norm - flow_mag_range[0]) * scaling, 0., 1.)
    if white_bg == True:
        value = np.ones_like(direction)
        hsv = np.stack([direction, magnitude, saturation], axis=-1)
    else:
        saturation = np.ones_like(direction)
        hsv = np.stack([direction, saturation , magnitude], axis=-1)
        rgb = matplotlib.colors.hsv_to_rgb(hsv)
    return rgb