File size: 20,943 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import kornia
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn

import cwm.eval.Flow.masking_flow as masking


def boltzmann(x, beta=1, eps=1e-9):
    if beta is None:
        return x
    x = torch.exp(x * beta)
    return x / x.amax((-1,-2), keepdim=True).clamp(min=eps)

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)

def imagenet_normalize(x, temporal_dim=1):
    mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(x.device)[None,None,:,None,None].to(x)
    std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(x.device)[None,None,:,None,None].to(x)
    if temporal_dim == 2:
        mean = mean.transpose(1,2)
        std = std.transpose(1,2)
    return (x - mean) / std

def imagenet_unnormalize(x, temporal_dim=2):
    device = x.device
    mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x)
    std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x)
    if temporal_dim == 2:
        mean = mean.transpose(1,2)
        std = std.transpose(1,2)
    x = x*std + mean
    return x



def coordinate_ims(batch_size, seq_length, imsize, normalize=True, dtype_out=torch.float32):
    static = False
    if seq_length == 0:
        static = True
        seq_length = 1
    B = batch_size
    T = seq_length
    H,W = imsize
    ones = torch.ones([B,H,W,1], dtype=dtype_out)
    if normalize:
        h = torch.divide(torch.arange(H).to(ones), torch.tensor(H-1, dtype=dtype_out))
        h = 2.0 * ((h.view(1, H, 1, 1) * ones) - 0.5)
        w = torch.divide(torch.arange(W).to(ones), torch.tensor(W-1, dtype=dtype_out))
        w = 2.0 * ((w.view(1, 1, W, 1) * ones) - 0.5)
    else:
        h = torch.arange(H).to(ones).view(1,H,1,1) * ones
        w = torch.arange(W).to(ones).view(1,1,W,1) * ones
    h = torch.stack([h]*T, 1)
    w = torch.stack([w]*T, 1)
    hw_ims = torch.cat([h,w], -1)
    if static:
        hw_ims = hw_ims[:,0]
    return hw_ims


def get_distribution_centroid(dist, eps=1e-9, normalize=False):

    B,T,C,H,W = dist.shape
    assert C == 1
    dist_sum = dist.sum((-2, -1), keepdim=True).clamp(min=eps)
    dist = dist / dist_sum

    grid = coordinate_ims(B, T, [H,W], normalize=normalize).to(dist.device)
    grid = grid.permute(0,1,4,2,3)
    centroid = (grid * dist).sum((-2,-1))
    return centroid



class FlowToRgb(object):

    def __init__(self, max_speed=1.0, from_image_coordinates=True, from_sampling_grid=False):
        self.max_speed = max_speed
        self.from_image_coordinates = from_image_coordinates
        self.from_sampling_grid = from_sampling_grid

    def __call__(self, flow):
        assert flow.size(-3) == 2, flow.shape
        if self.from_sampling_grid:
            flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
            flow_y = -flow_y
        elif not self.from_image_coordinates:
            flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
        else:
            flow_h, flow_w = torch.split(flow, [1,1], dim=-3)
            flow_x, flow_y = [flow_w, -flow_h]

        angle = torch.atan2(flow_y, flow_x) # in radians from -pi to pi
        speed = torch.sqrt(flow_x**2 + flow_y**2) / self.max_speed

        hue = torch.fmod(angle, torch.tensor(2 * np.pi))
        sat = torch.ones_like(hue)
        val = speed

        hsv = torch.cat([hue, sat, val], -3)
        rgb = kornia.color.hsv_to_rgb(hsv)
        return rgb

class Patchify(nn.Module):
    """Convert a set of images or a movie into patch vectors"""

    def __init__(self,
                 patch_size=(16, 16),
                 temporal_dim=1,
                 squeeze_channel_dim=True
                 ):
        super().__init__()
        self.set_patch_size(patch_size)
        self.temporal_dim = temporal_dim
        assert self.temporal_dim in [1, 2], self.temporal_dim
        self._squeeze_channel_dim = squeeze_channel_dim

    @property
    def num_patches(self):
        if (self.T is None) or (self.H is None) or (self.W is None):
            return None
        else:
            return (self.T // self.pt) * (self.H // self.ph) * (self.W // self.pw)

    def set_patch_size(self, patch_size):
        self.patch_size = patch_size
        if len(self.patch_size) == 2:
            self.ph, self.pw = self.patch_size
            self.pt = 1
            self._patches_are_3d = False
        elif len(self.patch_size) == 3:
            self.pt, self.ph, self.pw = self.patch_size
            self._patches_are_3d = True
        else:
            raise ValueError("patch_size must be a 2- or 3-tuple, but is %s" % self.patch_size)

        self.shape_inp = self.rank_inp = self.H = self.W = self.T = None
        self.D = self.C = self.E = self.embed_dim = None

    def _check_shape(self, x):
        self.shape_inp = x.shape
        self.rank_inp = len(self.shape_inp)
        self.H, self.W = self.shape_inp[-2:]
        assert (self.H % self.ph) == 0 and (self.W % self.pw) == 0, (self.shape_inp, self.patch_size)
        if (self.rank_inp == 5) and self._patches_are_3d:
            self.T = self.shape_inp[self.temporal_dim]
            assert (self.T % self.pt) == 0, (self.T, self.pt)
        elif self.rank_inp == 5:
            self.T = self.shape_inp[self.temporal_dim]
        else:
            self.T = 1

    def split_by_time(self, x):
        shape = x.shape
        assert shape[1] % self.T == 0, (shape, self.T)
        return x.view(shape[0], self.T, shape[1] // self.T, *shape[2:])

    def merge_by_time(self, x):
        shape = x.shape
        return x.view(shape[0], shape[1] * shape[2], *shape[3:])

    def video_to_patches(self, x):
        if self.rank_inp == 4:
            assert self.pt == 1, (self.pt, x.shape)
            x = rearrange(x, 'b c (h ph) (w pw) -> b (h w) (ph pw) c', ph=self.ph, pw=self.pw)
        else:
            assert self.rank_inp == 5, (x.shape, self.rank_inp, self.shape_inp)
            dim_order = 'b (t pt) c (h ph) (w pw)' if self.temporal_dim == 1 else 'b c (t pt) (h ph) (w pw)'
            x = rearrange(x, dim_order + ' -> b (t h w) (pt ph pw) c', pt=self.pt, ph=self.ph, pw=self.pw)

        self.N, self.D, self.C = x.shape[-3:]
        self.embed_dim = self.E = self.D * self.C
        return x

    def patches_to_video(self, x):
        shape = x.shape
        rank = len(shape)
        if rank == 4:
            B, _N, _D, _C = shape
        else:
            assert rank == 3, rank
            B, _N, _E = shape
            assert (_E % self.D == 0), (_E, self.D)
            x = x.view(B, _N, self.D, -1)

        if _N < self.num_patches:
            masked_patches = self.get_masked_patches(
                x,
                num_patches=(self.num_patches - _N),
                mask_mode=self.mask_mode)
            x = torch.cat([x, masked_patches], 1)

        x = rearrange(
            x,
            'b (t h w) (pt ph pw) c -> b c (t pt) (h ph) (w pw)',
            pt=self.pt, ph=self.ph, pw=self.pw,
            t=(self.T // self.pt), h=(self.H // self.ph), w=(self.W // self.pw))

        if self.rank_inp == 5 and (self.temporal_dim == 1):
            x = x.transpose(1, 2)
        elif self.rank_inp == 4:
            assert x.shape[2] == 1, x.shape
            x = x[:, :, 0]
        return x

    @staticmethod
    def get_masked_patches(x, num_patches, mask_mode='zeros'):
        shape = x.shape
        patches_shape = (shape[0], num_patches, *shape[2:])
        if mask_mode == 'zeros':
            return torch.zeros(patches_shape).to(x.device).to(x.dtype).detach()
        elif mask_mode == 'gray':
            return 0.5 * torch.ones(patches_shape).to(x.device).to(x.dtype).detach()
        else:
            raise NotImplementedError("Haven't implemented mask_mode == %s" % mask_mode)

    def average_within_patches(self, z):
        if len(z.shape) == 3:
            z = rearrange(z, 'b n (d c) -> b n d c', c=self.C)
        return z.mean(-2, True).repeat(1, 1, z.shape[-2], 1)

    def forward(self, x, to_video=False, mask_mode='zeros'):
        if not to_video:
            self._check_shape(x)
            x = self.video_to_patches(x)
            return x if not self._squeeze_channel_dim else x.view(x.size(0), self.N, -1)

        else:  # x are patches
            assert (self.shape_inp is not None) and (self.num_patches is not None)
            self.mask_mode = mask_mode
            x = self.patches_to_video(x)
            return x


class DerivativeFlowGenerator(nn.Module):
    """Estimate flow of a two-frame predictor using torch autograd"""

    def __init__(self,
                 predictor,
                 perturbation_patch_size=None,
                 aggregation_patch_size=None,
                 agg_power=None,
                 agg_channel_func=None,
                 num_samples=1,
                 leave_one_out_sampling=False,
                 average_jacobian=True,
                 confidence_thresh=None,
                 temporal_dim=2,
                 imagenet_normalize_inputs=True):

        super(DerivativeFlowGenerator, self).__init__()

        self.predictor = predictor

        self.patchify = Patchify(self.patch_size, temporal_dim=1, squeeze_channel_dim=True)

        self.set_temporal_dim(temporal_dim)

        self.imagenet_normalize_inputs = imagenet_normalize_inputs

        self.perturbation_patch_size = self._get_patch_size(perturbation_patch_size) or self.patch_size
        self.aggregation_patch_size = self._get_patch_size(aggregation_patch_size) or self.patch_size
        self.agg_patchify = Patchify(self.aggregation_patch_size,
                                     temporal_dim=1,
                                     squeeze_channel_dim=False)
        self.agg_channel_func = agg_channel_func or (lambda x: F.relu(x).sum(-3, True))
        self.average_jacobian = average_jacobian
        self.confidence_thresh = confidence_thresh

        self.num_samples = num_samples
        self.leave_one_out_sampling = leave_one_out_sampling
        self.agg_power = agg_power
        self.t_dim = temporal_dim

    def _get_patch_size(self, p):
        if p is None:
            return None
        elif isinstance(p, int):
            return (1, p, p)
        elif len(p) == 2:
            return (1, p[0], p[1])
        else:
            assert len(p) == 3, p
            return (p[0], p[1], p[2])

    def set_temporal_dim(self, t_dim):
        if t_dim == 1:
            self.predictor.t_dim = 1
            self.predictor.c_dim = 2
        elif t_dim == 2:
            self.predictor.c_dim = 1
            self.predictor.t_dim = 2
        else:
            raise ValueError("temporal_dim must be 1 or 2")

    @property
    def c_dim(self):
        if self.predictor is None:
            return None
        return self.predictor.c_dim

    @property
    def patch_size(self):
        if self.predictor is None:
            return None
        elif hasattr(self.predictor, 'patch_size'):
            return self.predictor.patch_size
        elif hasattr(self.predictor.encoder.patch_embed, 'proj'):
            return self.predictor.encoder.patch_embed.proj.kernel_size
        else:
            return None
    @property
    def S(self):
        return self.num_samples

    @property
    def sequence_length(self):
        if self.predictor is None:
            return None
        elif hasattr(self.predictor, 'sequence_length'):
            return self.predictor.sequence_length
        elif hasattr(self.predictor, 'num_frames'):
            return self.predictor.num_frames
        else:
            return 2
    @property
    def mask_shape(self):
        if self.predictor is None:
            return None
        elif hasattr(self.predictor, 'mask_shape'):
            return self.predictor.mask_shape

        assert self.patch_size is not None
        pt, ph, pw = self.patch_size
        return (self.sequence_length // pt,
                self.inp_shape[-2] // ph,
                self.inp_shape[-1] // pw)

    @property
    def perturbation_mask_shape(self):
        return (
            self.mask_shape[0],
            self.inp_shape[-2] // self.perturbation_patch_size[-2],
            self.inp_shape[-1] // self.perturbation_patch_size[-1]
        )



    @property
    def p_mask_shape(self):
        return self.perturbation_mask_shape

    @property
    def aggregation_mask_shape(self):
        return (
            1,
            self.inp_shape[-2] // self.aggregation_patch_size[-2],
            self.inp_shape[-1] // self.aggregation_patch_size[-1]
        )

    @property
    def a_mask_shape(self):
        return self.aggregation_mask_shape

    def get_perturbation_input(self, x):
        self.set_input(x)
        y = torch.zeros((self.B, *self.p_mask_shape), dtype=x.dtype, device=x.device, requires_grad=True)
        y = y.unsqueeze(2).repeat(1, 1, x.shape[2], 1, 1)
        return y

    def pred_patches_to_video(self, y, x, mask):
        """input at visible positions, preds at masked positions"""
        B, C = y.shape[0], y.shape[-1]
        self.patchify._check_shape(x)
        self.patchify.D = np.prod(self.patch_size)
        x = self.patchify(x)
        y_out = torch.zeros_like(x)
        x_vis = x[~mask]

        y_out[~mask] = x_vis.view(-1, C)
        try:
            y_out[mask] = y.view(-1, C)
        except:
            y_out[mask] = y.reshape(-1, C)

        return self.patchify(y_out, to_video=True)

    def set_image_size(self, *args, **kwargs):
        assert self.predictor is not None, "Can't set the image size without a predictor"
        if hasattr(self.predictor, 'set_image_size'):
            self.predictor.set_image_size(*args, **kwargs)
        else:
            self.predictor.image_size = args[0]

    def predict(self, x=None, mask=None, forward_full=False):
        if x is None:
            x = self.x
        if mask is None:
            mask = self.generate_mask(x)

        self.set_image_size(x.shape[-2:])
        y = self.predictor(
            self._preprocess(x),
            mask if (x.size(0) == 1) else self.mask_rectangularizer(mask), forward_full=forward_full)

        y = self.pred_patches_to_video(y, x, mask=mask)

        frame = -1 % y.size(1)
        y = y[:, frame:frame + 1]

        return y

    def _get_perturbation_func(self, x=None, mask=None):

        if (x is not None):
            self.set_input(x, mask)

        def forward_mini_image(y):
            y = y.repeat_interleave(self.perturbation_patch_size[-2], -2)
            y = y.repeat_interleave(self.perturbation_patch_size[-1], -1)
            x_pred = self.predict(self.x + y, self.mask)
            x_pred = self.agg_patchify(x_pred).mean(-2).sum(-1).view(self.B, *self.a_mask_shape)
            return x_pred[self.targets]

        return forward_mini_image

    def _postprocess_jacobian(self, jac):
        _jac = torch.zeros((self.B, *self.a_mask_shape, *jac.shape[1:])).to(jac.device).to(jac.dtype)
        _jac[self.targets] = jac
        jac = self.agg_channel_func(_jac)
        assert jac.size(-3) == 1, jac.shape
        jac = jac.squeeze(-3)[..., 0, :, :]  # derivative w.r.t. first frame and agg channels
        jac = jac.view(self.B, self.a_mask_shape[-2], self.a_mask_shape[-1],
                       self.B, self.p_mask_shape[-2], self.p_mask_shape[-1])
        bs = torch.arange(0, self.B).long().to(jac.device)
        jac = jac[bs, :, :, bs, :, :]  # take diagonal
        return jac

    def _confident_jacobian(self, jac):
        if self.confidence_thresh is None:
            return torch.ones_like(jac[:, None, ..., 0, 0])
        conf = (jac.amax((-2, -1)) > self.confidence_thresh).float()[:, None]
        return conf

    def set_input(self, x, mask=None, timestamps=None):
        shape = x.shape
        if len(shape) == 4:
            x = x.unsqueeze(1)
        else:
            assert len(shape) == 5, \
                "Input must be a movie of shape [B,T,C,H,W]" + \
                "or a single frame of shape [B,C,H,W]"

        self.inp_shape = x.shape
        self.x = x
        self.B = self.inp_shape[0]
        self.T = self.inp_shape[1]
        self.C = self.inp_shape[2]
        if mask is not None:
            self.mask = mask

        if timestamps is not None:
            self.timestamps = timestamps

    def _preprocess(self, x):
        if self.imagenet_normalize_inputs:
            x = imagenet_normalize(x)
        if self.t_dim != 1:
            x = x.transpose(self.t_dim, self.c_dim)
        return x

    def _jacobian_to_flows(self, jac):
        if self.agg_power is None:
            jac = (jac == jac.amax((-2, -1), True)).float()
        else:
            jac = torch.pow(jac, self.agg_power)

        jac = jac.view(self.B * np.prod(self.a_mask_shape[-2:]), 1, 1, *self.p_mask_shape[-2:])
        centroids = get_distribution_centroid(jac, normalize=False).view(
            self.B, self.a_mask_shape[-2], self.a_mask_shape[-1], 2)
        rescale = [self.a_mask_shape[-2] / self.p_mask_shape[-2],
                   self.a_mask_shape[-1] / self.p_mask_shape[-1]]
        centroids = centroids * torch.tensor(rescale, device=centroids.device).view(1, 1, 1, 2)

        flows = centroids - \
                coordinate_ims(1, 0, self.a_mask_shape[-2:], normalize=False).to(jac.device)
        flows = flows.permute(0, 3, 1, 2)
        px_scale = torch.tensor(self.aggregation_patch_size[-2:]).float().to(flows.device).view(1, 2, 1, 1)
        flows *= px_scale

        return flows

    def set_targets(self, targets=None, frame=-1):
        frame = frame % self.mask_shape[0]
        if targets is None:
            targets = self.get_mask_image(self.mask)[:, frame:frame + 1]
        else:
            assert len(targets.shape) == 4, targets.shape
            targets = targets[:, frame:frame + 1]
        self.targets = ~masking.upsample_masks(~targets, self.a_mask_shape[-2:])

    def _get_mask_partition(self, mask):
        mask = self.get_mask_image(mask)
        mask_list = masking.partition_masks(
            mask[:, 1:], num_samples=self.S, leave_one_out=self.leave_one_out_sampling)
        return [torch.cat([mask[:, 0:1].view(m.size(0), -1), m], -1)
                for m in mask_list]

    def _compute_jacobian(self, y):
        perturbation_func = self._get_perturbation_func()
        jac = torch.autograd.functional.jacobian(
            perturbation_func,
            y,
            vectorize=False)
        jac = self._postprocess_jacobian(jac)
        return jac

    def _upsample_mask(self, mask):
        return masking.upsample_masks(
            mask.view(mask.size(0), -1, *self.mask_shape[-2:]).float(), self.inp_shape[-2:])

    def get_mask_image(self, mask, upsample=False, invert=False, shape=None):
        if shape is None:
            shape = self.mask_shape
        mask = mask.view(-1, *shape)
        if upsample:
            mask = self._upsample_mask(mask)
        if invert:
            mask = 1 - mask
        return mask

    def forward(self, x, mask, targets=None):
        self.set_input(x, mask)
        y = self.get_perturbation_input(x)
        mask_list = self._get_mask_partition(mask)

        jacobian, flows, confident = [], [], []
        for s, mask_sample in enumerate(mask_list):
            self.set_input(x, mask_sample)
            self.set_targets(targets)

            import time
            t1 = time.time()
            jac = self._compute_jacobian(y)
            conf_jac = masking.upsample_masks(self._confident_jacobian(jac), self.a_mask_shape[-2:])
            jacobian.append(jac)
            confident.append(conf_jac)
            if not self.average_jacobian:
                flow = self._jacobian_to_flows(jac) * self.targets * conf_jac * \
                       masking.upsample_masks(self.get_mask_image(self.mask)[:, 1:], self.a_mask_shape[-2:])
                flows.append(flow)
            t2 = time.time()
            print(t2 - t1)

        jacobian = torch.stack(jacobian, -1)
        confident = torch.stack(confident, -1)
        valid = torch.stack([masking.upsample_masks(
            self.get_mask_image(m)[:, 1:], self.a_mask_shape[-2:]) for m in mask_list], -1)
        valid = valid * confident

        if self.average_jacobian:
            _valid = valid[:, 0].unsqueeze(-2).unsqueeze(-2)
            jac = (jacobian * _valid.float()).sum(-1) / _valid.float().sum(-1).clamp(min=1)
            flows = self._jacobian_to_flows(jac) * \
                    masking.upsample_masks(_valid[:, None, ..., 0, 0, :].amax(-1).bool(), self.a_mask_shape[-2:])
            if targets is not None:
                self.set_targets(targets)
                flows *= self.targets
        else:
            flows = torch.stack(flows, -1)
            flows = flows.sum(-1) / valid.float().sum(-1).clamp(min=1)

        valid = valid * (targets[:, -1:].unsqueeze(-1) if targets is not None else 1)

        return (jacobian, flows, valid)