File size: 22,122 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import random
import math
import numpy as np
import torch
import torch.nn.functional as F
from . import  losses as bblosses
import kornia

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)

def compute_optical_flow(embedding_tensor, mask_tensor, frame_size):
    # Unroll the mask tensor and find the indices of the masked and unmasked values in the second frame
    mask_unrolled = mask_tensor.view(-1)

    second_frame_unmask_indices = torch.where(mask_unrolled[frame_size ** 2:] == False)[0]

    # Divide the embedding tensor into two parts: corresponding to the first and the second frame
    first_frame_embeddings = embedding_tensor[0, :frame_size ** 2, :]
    second_frame_embeddings = embedding_tensor[0, frame_size ** 2:, :]

    # print(first_frame_embeddings.shape, second_frame_embeddings.shape, embedding_tensor.shape)

    # Compute the cosine similarity between the unmasked embeddings from the second frame and the embeddings from the first frame
    dot_product = torch.matmul(second_frame_embeddings, first_frame_embeddings.T)
    norms = torch.norm(second_frame_embeddings, dim=1)[:, None] * torch.norm(first_frame_embeddings, dim=1)[None, :]
    cos_sim_matrix = dot_product / norms

    # Find the indices of pixels in the first frame that are most similar to each unmasked pixel in the second frame
    first_frame_most_similar_indices = cos_sim_matrix.argmax(dim=-1)

    # Convert the 1D pixel indices into 2D coordinates
    second_frame_y = second_frame_unmask_indices // frame_size
    second_frame_x = second_frame_unmask_indices % frame_size
    first_frame_y = first_frame_most_similar_indices // frame_size
    first_frame_x = first_frame_most_similar_indices % frame_size

    # Compute the x and y displacements and convert them to float
    displacements_x = (second_frame_x - first_frame_x).float()
    displacements_y = (second_frame_y - first_frame_y).float()

    # Initialize optical flow tensor
    optical_flow = torch.zeros((2, frame_size, frame_size), device=embedding_tensor.device)

    # Assign the computed displacements to the corresponding pixels in the optical flow tensor
    optical_flow[0, second_frame_y, second_frame_x] = displacements_x
    optical_flow[1, second_frame_y, second_frame_x] = displacements_y

    return optical_flow


def get_minimal_224_crops_new_batched(video_tensor, N):
    B, T, C, H, W = video_tensor.shape

    # Calculate the number of crops needed in both the height and width dimensions
    num_crops_h = math.ceil(H / 224) if H > 224 else 1
    num_crops_w = math.ceil(W / 224) if W > 224 else 1

    # Calculate the step size for the height and width dimensions
    step_size_h = 0 if H <= 224 else max(0, (H - 224) // (num_crops_h - 1))
    step_size_w = 0 if W <= 224 else max(0, (W - 224) // (num_crops_w - 1))

    # Create a list to store the cropped tensors and their start positions
    cropped_tensors = []
    crop_positions = []

    # Iterate over the height and width dimensions, extract the 224x224 crops, and append to the cropped_tensors list
    for i in range(num_crops_h):
        for j in range(num_crops_w):
            start_h = i * step_size_h
            start_w = j * step_size_w
            end_h = min(start_h + 224, H)
            end_w = min(start_w + 224, W)
            crop = video_tensor[:, :, :, start_h:end_h, start_w:end_w]
            cropped_tensors.append(crop)
            crop_positions.append((start_h, start_w))

    D = len(cropped_tensors)

    # If N is greater than D, generate additional random crops
    if N > D and H > 224 and W > 224:  # check if H and W are greater than 224
        for _ in range(N - D):
            start_h = random.randint(0, H - 224)
            start_w = random.randint(0, W - 224)
            crop = video_tensor[:, :, :, start_h:(start_h + 224), start_w:(start_w + 224)]
            cropped_tensors.append(crop)
            crop_positions.append((start_h, start_w))

    # Reshape the cropped tensors to fit the required output shape (B, T, C, 224, 224)
    cropped_tensors = [crop.reshape(B, T, C, 224, 224) for crop in cropped_tensors]

    return cropped_tensors, crop_positions


def create_weighted_mask_batched(h, w):
    y_mask = np.linspace(0, 1, h)
    y_mask = np.minimum(y_mask, 1 - y_mask)
    x_mask = np.linspace(0, 1, w)
    x_mask = np.minimum(x_mask, 1 - x_mask)
    weighted_mask = np.outer(y_mask, x_mask)
    return torch.from_numpy(weighted_mask).float()


def reconstruct_video_new_2_batched(cropped_tensors, crop_positions, original_shape):
    B, T, C, H, W = original_shape

    # Initialize an empty tensor to store the reconstructed video
    reconstructed_video = torch.zeros((B, T, C, H, W)).to(cropped_tensors[0].device)

    # Create a tensor to store the sum of weighted masks
    weighted_masks_sum = torch.zeros((B, T, C, H, W)).to(cropped_tensors[0].device)

    # Create a weighted mask for the crops
    weighted_mask = create_weighted_mask_batched(224, 224).to(cropped_tensors[0].device)
    weighted_mask = weighted_mask[None, None, None, :, :]  # Extend dimensions to match the cropped tensor.

    for idx, crop in enumerate(cropped_tensors):
        start_h, start_w = crop_positions[idx]

        # Multiply the crop with the weighted mask
        weighted_crop = crop * weighted_mask

        # Add the weighted crop to the corresponding location in the reconstructed_video tensor
        reconstructed_video[:, :, :, start_h:(start_h + 224), start_w:(start_w + 224)] += weighted_crop

        # Update the weighted_masks_sum tensor
        weighted_masks_sum[:, :, :, start_h:(start_h + 224), start_w:(start_w + 224)] += weighted_mask

    # Add a small epsilon value to avoid division by zero
    epsilon = 1e-8

    # Normalize the reconstructed video by dividing each pixel by its corresponding weighted_masks_sum value plus epsilon
    reconstructed_video /= (weighted_masks_sum + epsilon)

    return reconstructed_video


def l2_norm(x):
    return x.square().sum(-3, True).sqrt()


resize = lambda x, a: F.interpolate(x, [int(a * x.shape[-2]), int(a * x.shape[-1])], mode='bilinear',
                                    align_corners=False)

upsample = lambda x, H, W: F.interpolate(x, [int(H), int(W)], mode='bilinear', align_corners=False)


def get_occ_masks(flow_fwd, flow_bck, occ_thresh=0.5):
    fwd_bck_cycle, _ = bblosses.backward_warp(img2=flow_bck, flow=flow_fwd)
    flow_diff_fwd = flow_fwd + fwd_bck_cycle

    bck_fwd_cycle, _ = bblosses.backward_warp(img2=flow_fwd, flow=flow_bck)
    flow_diff_bck = flow_bck + bck_fwd_cycle

    norm_fwd = l2_norm(flow_fwd) ** 2 + l2_norm(fwd_bck_cycle) ** 2
    norm_bck = l2_norm(flow_bck) ** 2 + l2_norm(bck_fwd_cycle) ** 2

    occ_thresh_fwd = occ_thresh * norm_fwd + 0.5
    occ_thresh_bck = occ_thresh * norm_bck + 0.5

    occ_mask_fwd = 1 - (l2_norm(flow_diff_fwd) ** 2 > occ_thresh_fwd).float()
    occ_mask_bck = 1 - (l2_norm(flow_diff_bck) ** 2 > occ_thresh_bck).float()

    return occ_mask_fwd, occ_mask_bck

def forward_backward_cycle_consistency(flow_fwd, flow_bck, niters=10):
    # Make sure to be using axes-swapped, upsampled flows!
    bck_flow_clone = flow_bck.clone().detach()
    fwd_flow_clone = flow_fwd.clone().detach()

    for i in range(niters):

        fwd_bck_cycle_orig, _ = bblosses.backward_warp(img2=bck_flow_clone, flow=fwd_flow_clone)
        flow_diff_fwd_orig = fwd_flow_clone + fwd_bck_cycle_orig

        fwd_flow_clone = fwd_flow_clone - flow_diff_fwd_orig/2

        bck_fwd_cycle_orig, _ = bblosses.backward_warp(img2=fwd_flow_clone, flow=bck_flow_clone)
        flow_diff_bck_orig = bck_flow_clone + bck_fwd_cycle_orig


        bck_flow_clone = bck_flow_clone - flow_diff_bck_orig/2

    return fwd_flow_clone, bck_flow_clone

from PIL import Image
def resize_flow_map(flow_map, target_size):
    """
    Resize a flow map to a target size while adjusting the flow vectors.

    Parameters:
    flow_map (numpy.ndarray): Input flow map of shape (H, W, 2) where each pixel contains a (dx, dy) flow vector.
    target_size (tuple): Target size (height, width) for the resized flow map.

    Returns:
    numpy.ndarray: Resized and scaled flow map of shape (target_size[0], target_size[1], 2).
    """
    # Get the original size
    flow_map = flow_map[0].detach().cpu().numpy()
    flow_map = flow_map.transpose(1, 2, 0)
    original_size = flow_map.shape[:2]

    # Separate the flow map into two channels: dx and dy
    flow_map_x = flow_map[:, :, 0]
    flow_map_y = flow_map[:, :, 1]

    # Convert each flow channel to a PIL image for resizing
    flow_map_x_img = Image.fromarray(flow_map_x)
    flow_map_y_img = Image.fromarray(flow_map_y)

    # Resize both channels to the target size using bilinear interpolation
    flow_map_x_resized = flow_map_x_img.resize(target_size, Image.BILINEAR)
    flow_map_y_resized = flow_map_y_img.resize(target_size, Image.BILINEAR)

    # Convert resized PIL images back to NumPy arrays
    flow_map_x_resized = np.array(flow_map_x_resized)
    flow_map_y_resized = np.array(flow_map_y_resized)

    # Compute the scaling factor based on the size change
    scale_factor = target_size[0] / original_size[0]  # Scaling factor for both dx and dy

    # Scale the flow vectors (dx and dy) accordingly
    flow_map_x_resized *= scale_factor
    flow_map_y_resized *= scale_factor

    # Recombine the two channels into a resized flow map
    flow_map_resized = np.stack([flow_map_x_resized, flow_map_y_resized], axis=-1)

    flow_map_resized = torch.from_numpy(flow_map_resized)[None].permute(0, 3, 1, 2)

    return flow_map_resized

def get_vmae_optical_flow_crop_batched_smoothed(generator,
                          mask_generator,
                         img1,
                         img2,
                         neg_back_flow=True,
                         num_scales=1,
                         min_scale=400,
                         N_mask_samples=100,
                         mask_ratio=0.8,
                        smoothing_factor=1):

    ##### DEPRECATED
    print('Deprecated. Please use scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed')

    return scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed(generator,
                          mask_generator,
                         img1,
                         img2,
                         neg_back_flow=neg_back_flow,
                         num_scales=num_scales,
                         min_scale=min_scale,
                         N_mask_samples=N_mask_samples,
                         mask_ratio=mask_ratio,
    smoothing_factor=smoothing_factor)



def average_crops(tensor, D):
    C, H, W = tensor.shape

    # Create zero-filled tensors for the shifted crops
    down_shifted = torch.zeros_like(tensor)
    up_shifted = torch.zeros_like(tensor)
    right_shifted = torch.zeros_like(tensor)
    left_shifted = torch.zeros_like(tensor)

    # Shift the tensor and store the results in the zero-filled tensors
    down_shifted[:, :H-D, :] = tensor[:, D:, :]
    up_shifted[:, D:, :] = tensor[:, :H-D, :]
    right_shifted[:, :, :W-D] = tensor[:, :, D:]
    left_shifted[:, :, D:] = tensor[:, :, :W-D]

    # Average the tensor with its four crops
    result = (tensor + down_shifted + up_shifted + right_shifted + left_shifted) / 5.0

    return result


def scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed(predictor,
                                                              mask_generator,
                                                              img1,
                                                              img2,
                                                              conditioning_img=None,
                                                              num_scales=1,
                                                              min_scale=400,
                                                              N_mask_samples=100,
                                                              smoothing_factor=1):
    B = img1.shape[0]
    assert len(img1.shape) == 4
    assert num_scales >= 1

    # For scaling
    h1 = img2.shape[-2]
    w1 = img2.shape[-1]


    alpha = (min_scale / img1.shape[-2]) ** (1 / (num_scales - 1)) if num_scales > 1 else 1

    frame_size = 224 // predictor.patch_size[-1]

    patch_size = predictor.patch_size[-1]

    num_frames = predictor.num_frames

    all_fwd_flows_e2d = []

    s_hs = []
    s_ws = []

    for aidx in range(num_scales):
        # print(aidx)

        # print('aidx: ', aidx)

        img1_scaled = F.interpolate(img1.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
                                    mode='bicubic', align_corners=True)
        img2_scaled = F.interpolate(img2.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
                                    mode='bicubic', align_corners=True)

        if conditioning_img is not None:
            conditioning_img_scaled = F.interpolate(conditioning_img.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
                                    mode='bilinear', align_corners=False)

        # print("img1_scaled", img1_scaled.shape, alpha, min_scale, num_scales)

        h2 = img2_scaled.shape[-2]
        w2 = img2_scaled.shape[-1]

        s_h = h1 / h2
        s_w = w1 / w2

        s_hs.append(s_h)
        s_ws.append(s_w)

        if conditioning_img is not None:
            video = torch.cat([conditioning_img_scaled.unsqueeze(1), img2_scaled.unsqueeze(1), img1_scaled.unsqueeze(1)], 1)
        else:
            video = torch.cat([img2_scaled.unsqueeze(1)]*(num_frames-1) + [img1_scaled.unsqueeze(1)], 1)

        # Should work, even if the incoming video is already 224x224
        crops1, c_pos1 = get_minimal_224_crops_new_batched(video, 1)

        num_crops = len(crops1)

        crop_flows_enc = []
        crop_flows_enc2dec = []
        N_samples = N_mask_samples

        crop = torch.cat(crops1, 0).cuda()

        optical_flows_enc2dec = torch.zeros(B * num_crops, 2, frame_size, frame_size).cuda()
        mask_counts = torch.zeros(frame_size, frame_size).cuda()

        i = 0
        while i < N_samples or (mask_counts == 0).any().item():
            if i % 100 == 0:
                pass  # print(i)

            # This would be that every sample has the same mask. For now that's okay I think
            mask = mask_generator().bool().cuda()
            mask_2f = ~mask[0, (frame_size * frame_size)*(num_frames-1):]
            mask_counts += mask_2f.reshape(frame_size, frame_size)

            with torch.cuda.amp.autocast(enabled=True):

                processed_x = crop.transpose(1, 2)

                encoder_out = predictor.encoder(processed_x.to(torch.float16), mask.repeat(B * num_crops, 1))
                encoder_to_decoder = predictor.encoder_to_decoder(encoder_out)

                encoder_to_decoder = encoder_to_decoder[:, (frame_size * frame_size)*(num_frames-2):, :]
                flow_mask = mask[:, (frame_size * frame_size)*(num_frames-2):]

                optical_flow_e2d = []
                # one per batch element for now
                for b in range(B * num_crops):
                    batch_flow = compute_optical_flow(encoder_to_decoder[b].unsqueeze(0), flow_mask, frame_size)
                    # optical_flow_e2d.append(batch_flow.unsqueeze(0))

                    optical_flow_e2d.append(average_crops(batch_flow, smoothing_factor).unsqueeze(0))

                optical_flow_e2d = torch.cat(optical_flow_e2d, 0)
                optical_flows_enc2dec += optical_flow_e2d
            i += 1

        optical_flows_enc2dec = optical_flows_enc2dec / mask_counts

        #other fucntion
        # scale_factor_y = video.shape[-2] / 224
        # scale_factor_x = video.shape[-1] / 224
        #
        # scaled_optical_flow = torch.zeros_like(optical_flows_enc2dec)
        # scaled_optical_flow[:, 0, :, :] = optical_flows_enc2dec[:, 0, :, :] * scale_factor_x * s_w
        # scaled_optical_flow[:, 1, :, :] = optical_flows_enc2dec[:, 1, :, :] * scale_factor_y * s_h
        #
        # # split the crops back up
        # crop_flows_enc2dec = scaled_optical_flow.split(B, 0)

        ###
        #Kevin's fn
        crop_flows_enc2dec = optical_flows_enc2dec.split(B, 0)

        ###

        #Changed by Kevin
        T1 = [F.interpolate(_, [int(224), int(224)], mode='bicubic', align_corners=True).unsqueeze(1).cpu() for _ in
              crop_flows_enc2dec]
        optical_flows_enc2dec_joined = reconstruct_video_new_2_batched(T1, c_pos1, (
        B, 1, 2, video.shape[-2], video.shape[-1])).squeeze(1)

        #other function
        # optical_flows_enc2dec_joined = reconstruct_video_new_2_batched(
        #     [_.unsqueeze(1).repeat_interleave(patch_size, -1).repeat_interleave(patch_size, -2).cpu() for _ in
        #      crop_flows_enc2dec], c_pos1, (B, 1, 2, video.shape[-2], video.shape[-1])).squeeze(1)
        #
        all_fwd_flows_e2d.append(optical_flows_enc2dec_joined)

    #other function
    # all_fwd_flows_e2d_new = []
    #
    # for r in all_fwd_flows_e2d:
    #     new_r = upsample(r, all_fwd_flows_e2d[0].shape[-2], all_fwd_flows_e2d[0].shape[-1])
    #     all_fwd_flows_e2d_new.append(new_r.unsqueeze(-1))
    # return_flow = torch.cat(all_fwd_flows_e2d_new, -1).mean(-1)
    #
    #
    # return_flow = -return_flow
    # all_fwd_flows_e2d_new = [-_ for _ in all_fwd_flows_e2d_new]
    #
    # return return_flow, all_fwd_flows_e2d_new

    #Kevin's method
    all_fwd_flows_e2d_new = []

    for ridx, r in enumerate(all_fwd_flows_e2d):
        # print('ridx', ridx)
        # print('sh', s_hs[ridx])
        # print('sw', s_ws[ridx])
        # print('scale_fac y', scale_ys[ridx])
        # print('scale_fac x', scale_xs[ridx])

        _sh = s_hs[ridx]
        _sw = s_ws[ridx]
        _sfy = predictor.patch_size[-1]
        _sfx = predictor.patch_size[-1]

        # plt.figure(figsize=(20, 20))

        # plt.subplot(1,3,1)
        # plt.imshow(f2rgb(-r).cpu().numpy()[0].transpose(1,2,0))

        # plt.subplot(1,3,2)
        new_r = F.interpolate(r, [int(all_fwd_flows_e2d[0].shape[-2]), int(all_fwd_flows_e2d[0].shape[-1])], mode='bicubic', align_corners=True)
        # plt.imshow(f2rgb(-new_r).cpu().numpy()[0].transpose(1,2,0))

        scaled_new_r = torch.zeros_like(new_r)
        scaled_new_r[:, 0, :, :] = new_r[:, 0, :, :] * _sfx * _sw
        scaled_new_r[:, 1, :, :] = new_r[:, 1, :, :] * _sfy * _sh

        # plt.subplot(1,3,3)
        # plt.imshow(f2rgb(-scaled_new_r).cpu().numpy()[0].transpose(1,2,0))

        # plt.show()

        all_fwd_flows_e2d_new.append(scaled_new_r.unsqueeze(-1))
    return_flow = torch.cat(all_fwd_flows_e2d_new, -1).mean(-1)

    return_flow = -return_flow
    all_fwd_flows_e2d_new = [-_ for _ in all_fwd_flows_e2d_new]

    return return_flow , all_fwd_flows_e2d_new

def extract_jacobians_and_flows(img1, img2,
                                flow_generator,
                                mask,
                                target_mask=None):

    IMAGE_SIZE = img1.shape[-2:]

    y = torch.cat([img2.unsqueeze(1), img1.unsqueeze(1)], 1)

    jacobians, flows, _ = flow_generator(y, mask, target_mask)

    # swap x,y flow dims
    flows = torch.cat([flows[0, 1].unsqueeze(0), flows[0, 0].unsqueeze(0)])

    # upsample to 224
    flows = flows.unsqueeze(0).repeat_interleave(IMAGE_SIZE[0] // flows.shape[-1], -1).repeat_interleave(
        IMAGE_SIZE[0] // flows.shape[-1], -2)

    return jacobians, flows

import matplotlib.pyplot as plt

class FlowToRgb(object):

    def __init__(self, max_speed=1.0, from_image_coordinates=True, from_sampling_grid=False):
        self.max_speed = max_speed
        self.from_image_coordinates = from_image_coordinates
        self.from_sampling_grid = from_sampling_grid

    def __call__(self, flow):
        assert flow.size(-3) == 2, flow.shape
        if self.from_sampling_grid:
            flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
            flow_y = -flow_y
        elif not self.from_image_coordinates:
            flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
        else:
            flow_h, flow_w = torch.split(flow, [1,1], dim=-3)
            flow_x, flow_y = [flow_w, -flow_h]


        # print("flow_x", flow_x[0, :, 0, 0], flow_y[0, :, 0, 0])
        angle = torch.atan2(flow_y, flow_x) # in radians from -pi to pi
        speed = torch.sqrt(flow_x**2 + flow_y**2) / self.max_speed

        # print("angle", angle[0, :, 0, 0] * 180 / np.pi)

        hue = torch.fmod(angle, torch.tensor(2 * np.pi))
        sat = torch.ones_like(hue)
        val = speed

        hsv = torch.cat([hue, sat, val], -3)
        rgb = kornia.color.hsv_to_rgb(hsv)
        return rgb

    def make_colorwheel(self):
        """
        Generates a color wheel for optical flow visualization as presented in:
        Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
        """
        RY = 15
        YG = 6
        GC = 4
        CB = 11
        BM = 13
        MR = 6

        ncols = RY + YG + GC + CB + BM + MR
        colorwheel = np.zeros((ncols, 3))
        col = 0

        # RY
        colorwheel[0:RY, 0] = 255
        colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
        col += RY
        # YG
        colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
        colorwheel[col:col + YG, 1] = 255
        col += YG
        # GC
        colorwheel[col:col + GC, 1] = 255
        colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
        col += GC
        # CB
        colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(0, CB) / CB)
        colorwheel[col:col + CB, 2] = 255
        col += CB
        # BM
        colorwheel[col:col + BM, 2] = 255
        colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
        col += BM
        # MR
        colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(0, MR) / MR)
        colorwheel[col:col + MR, 0] = 255
        return colorwheel