File size: 9,014 Bytes
6dfcb0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from .update import BasicUpdateBlock, SmallUpdateBlock
from .extractor import BasicEncoder, SmallEncoder
from .corr import CorrBlock, AlternateCorrBlock
from .utils.utils import bilinear_sampler, coords_grid, upflow8

import argparse
from pathlib import Path

try:
    autocast = torch.cuda.amp.autocast
except:
    # dummy autocast for PyTorch < 1.6
    class autocast:
        def __init__(self, enabled):
            pass
        def __enter__(self):
            pass
        def __exit__(self, *args):
            pass

class Dummy:
    def __init__(self, enabled):
        pass
    def __enter__(self):
        pass
    def __exit__(self, *args):
        pass

def get_args(cmd=None):
    parser = argparse.ArgumentParser()
    parser.add_argument('--corr_levels', type=int, default=4)
    parser.add_argument('--corr_radius', type=int, default=4)
    parser.add_argument('--dropout', type=float, default=0.0)
    parser.add_argument('--mixed_precision', action='store_true')
    parser.add_argument('--small', action='store_true')
    parser.add_argument('--gpus', type=int, nargs='+', default=[0])

    if cmd is None:
        args = parser.parse_args()
    else:
        args = parser.parse_args(cmd)
    return args

def load_raft_model(load_path,
                    ignore_prefix=None,
                    multiframe=False,
                    scale_inputs=False,
                    **kwargs):

    path = Path(load_path) if load_path else None

    args = get_args("")
    for k,v in kwargs.items():
        args.__setattr__(k,v)
    args.multiframe = multiframe
    args.scale_inputs = scale_inputs

    model = RAFT(args)

    if load_path is not None:
        weight_dict = torch.load(load_path, map_location=torch.device("cpu"))
        new_dict = dict()
        for k in weight_dict.keys():
            if 'module' in k:
                new_dict[k.replace('module.', '')] = weight_dict[k]
            else:
                new_dict[k] = weight_dict[k]

        if ignore_prefix is not None:
            new_dict_1 = dict()
            for k, v in new_dict.items():
                new_dict_1[k.replace(ignore_prefix, '')] = v
            new_dict = new_dict_1

        did_load = model.load_state_dict(new_dict, strict=False)
        print(did_load, type(model).__name__, load_path)
    else:
        print("created a new %s with %d parameters" % (
            type(model).__name__,
            sum([v.numel() for v in model.parameters()])))

    return model

def get_raft_flow(x, raft_model, iters=24, backward=False, t_dim=1):
    assert len(x.shape) == 5, x.shape
    assert x.shape[t_dim] >= 2, x.shape
    x = x * 255.0
    inds = torch.tensor([0,1]).to(x.device)
    x1, x2 = torch.index_select(x, t_dim, inds).unbind(t_dim)
    if backward:
        flow = raft_model(x2, x1, test_mode=True, iters=iters)[-1]
    else:
        flow = raft_model(x1, x2, test_mode=True, iters=iters)[-1]
        
    return flow

class RAFT(nn.Module):
    def __init__(self, args):
        super(RAFT, self).__init__()
        self.args = args
        self.multiframe = self.args.multiframe
        self.scale_inputs = self.args.scale_inputs

        if args.small:
            self.hidden_dim = hdim = 96
            self.context_dim = cdim = 64
            args.corr_levels = 4
            args.corr_radius = 3
        
        else:
            self.hidden_dim = hdim = 128
            self.context_dim = cdim = 128
            args.corr_levels = 4
            args.corr_radius = 4

        if 'dropout' not in self.args:
            self.args.dropout = 0

        if 'alternate_corr' not in self.args:
            self.args.alternate_corr = False

        # feature network, context network, and update block
        if args.small:
            self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)        
            self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
            self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)

        else:
            self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)        
            self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
            self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()

    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
        N, C, H, W = img.shape
        coords0 = coords_grid(N, H//8, W//8, device=img.device, dtype=img.dtype)
        coords1 = coords_grid(N, H//8, W//8, device=img.device, dtype=img.dtype)

        # optical flow computed as difference: flow = coords1 - coords0
        return coords0, coords1

    def upsample_flow(self, flow, mask):
        """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
        N, _, H, W = flow.shape
        mask = mask.view(N, 1, 9, 8, 8, H, W)
        mask = torch.softmax(mask, dim=2)

        up_flow = F.unfold(8 * flow, [3,3], padding=1)
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        return up_flow.reshape(N, 2, 8*H, 8*W)

    @property
    def iters(self):
        if getattr(self, '_iters', None) is None:
            return None
        return self._iters
    @iters.setter
    def iters(self, value=None):
        self._iters = value

    def _forward_two_images(
            self,
            image1, image2,
            iters=24, flow_init=None,
            upsample=True, test_mode=True, **kwargs):
        """ Estimate optical flow between pair of frames """
        if self.iters is not None:
            iters = self.iters

        image1 = 2 * (image1 / 255.0) - 1.0
        image2 = 2 * (image2 / 255.0) - 1.0

        image1 = image1.contiguous()
        image2 = image2.contiguous()

        hdim = self.hidden_dim
        cdim = self.context_dim

        # run the feature network
        decorator = autocast(enabled=True) if \
            (self.args.mixed_precision or (image1.dtype in [torch.float16, torch.bfloat16])) \
            else Dummy(enabled=False)
        with decorator:
            fmap1, fmap2 = self.fnet([image1, image2])        
        
        fmap1 = fmap1.float()
        fmap2 = fmap2.float()
        if self.args.alternate_corr:
            corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
        else:
            corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)

        # run the context network
        # with autocast(enabled=self.args.mixed_precision):
        with decorator:
            cnet = self.cnet(image1)
            net, inp = torch.split(cnet, [hdim, cdim], dim=1)
            net = torch.tanh(net)
            inp = torch.relu(inp)

        coords0, coords1 = self.initialize_flow(image1)

        if flow_init is not None:
            coords1 = coords1 + flow_init

        flow_predictions = []
        for itr in range(iters):
            coords1 = coords1.detach()
            corr = corr_fn(coords1) # index correlation volume

            flow = coords1 - coords0
            # with autocast(enabled=self.args.mixed_precision):
            with decorator:
                net, up_mask, delta_flow, motion_features = self.update_block(net, inp, corr, flow)


            # F(t+1) = F(t) + \Delta(t)
            coords1 = coords1 + delta_flow

            # upsample predictions
            if up_mask is None:
                flow_up = upflow8(coords1 - coords0)
            else:
                flow_up = self.upsample_flow(coords1 - coords0, up_mask)
            
            flow_predictions.append(flow_up)

        if test_mode:
            return coords1 - coords0, flow_up, motion_features
            
        return flow_predictions, motion_features

    def forward(self, *args, **kwargs):
        
        if not self.multiframe:
            return self._forward_two_images(*args, **kwargs)
        x = (args[0] * 255.0) if self.scale_inputs else args[0]
        assert len(x.shape) == 5, x.shape
        assert x.shape[1] >= 2, x.shape
        num_frames = x.size(1)
        flows = []
        motion_features = []
        backward = kwargs.get('backward', False)
        for t in range(num_frames-1):
            x1, x2 = torch.index_select(
                x, 1, torch.tensor([t,t+1]).to(x.device)).unbind(1)
            _args = (x2, x1) if backward else (x1, x2)
            _, flow, features = self._forward_two_images(*_args, *args[1:], **kwargs)

            flows.insert(0, flow) if backward else flows.append(flow)
            motion_features.append(features)


        return torch.stack(flows, 1), torch.stack(motion_features, 1)