File size: 1,015 Bytes
ff39d68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import streamlit as st
import datetime
from transformers import pipeline
import gradio as gr
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
classifier = pipeline(
"text-classification",
model="bhadresh-savani/distilbert-base-uncased-emotion")
def speech_to_text(speech):
text = asr(speech)["text"]
return text
def text_to_sentiment(text):
sentiment = classifier(text)[0]["label"]
return sentiment
demo = gr.Blocks()
with demo:
#audio_file = gr.Audio(type="filepath")
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
text = gr.Textbox()
label = gr.Label()
saved = gr.Textbox()
savedAll = gr.Textbox()
b1 = gr.Button("Recognize Speech")
b2 = gr.Button("Classify Sentiment")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
b2.click(text_to_sentiment, inputs=text, outputs=label)
demo.launch(share=True) |