first
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import datetime
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
8 |
+
|
9 |
+
def transcribe(audio):
|
10 |
+
text = asr(audio)["text"]
|
11 |
+
return text
|
12 |
+
|
13 |
+
classifier = pipeline(
|
14 |
+
"text-classification",
|
15 |
+
model="bhadresh-savani/distilbert-base-uncased-emotion")
|
16 |
+
|
17 |
+
def speech_to_text(speech):
|
18 |
+
text = asr(speech)["text"]
|
19 |
+
return text
|
20 |
+
|
21 |
+
def text_to_sentiment(text):
|
22 |
+
sentiment = classifier(text)[0]["label"]
|
23 |
+
return sentiment
|
24 |
+
|
25 |
+
demo = gr.Blocks()
|
26 |
+
|
27 |
+
with demo:
|
28 |
+
#audio_file = gr.Audio(type="filepath")
|
29 |
+
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
30 |
+
text = gr.Textbox()
|
31 |
+
label = gr.Label()
|
32 |
+
saved = gr.Textbox()
|
33 |
+
savedAll = gr.Textbox()
|
34 |
+
|
35 |
+
b1 = gr.Button("Recognize Speech")
|
36 |
+
b2 = gr.Button("Classify Sentiment")
|
37 |
+
|
38 |
+
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
39 |
+
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
40 |
+
|
41 |
+
demo.launch(share=True)
|