File size: 2,495 Bytes
7a7ebdf
ff39d68
4240a50
560a994
 
 
58b2731
ff39d68
560a994
ff39d68
 
 
 
 
 
 
 
560a994
 
d250ad6
 
 
 
560a994
 
 
 
ff39d68
d02f0ba
ff39d68
560a994
 
0e1f235
c319de9
0e1f235
58b2731
 
560a994
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1f235
ff39d68
 
 
35b1732
ff39d68
35b1732
ff39d68
a212991
 
d250ad6
564ec1c
 
d250ad6
560a994
35b1732
d250ad6
ff39d68
0e1f235
f5dc180
c319de9
0e1f235
560a994
 
 
 
ff39d68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
import os
import spacy
nlp = spacy.load('en_core_web_sm')

auth_token = os.environ.get("HF_Token")

##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
    text = asr(audio)["text"]
    return text
def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

##Summarization 
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
    stext = summarizer(text)
    return stext

##Fiscal Sentiment
tokenizer = AutoTokenizer.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
audit_model = AutoModelForSequenceClassification.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
nlp = pipeline("text-classification", model=audit_model, tokenizer=tokenizer)
def text_to_sentiment(text):
    sentiment = nlp(text)[0]["label"]
    return sentiment 

##Company Extraction    
def ner(text):
    api = gr.Interface.load("dslim/bert-base-NER", src='models')
    spans = api(text)
    #replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
    return spans    

##Fiscal Sentiment by Sentence
def fin_ext(text):
    doc = nlp(text)
    doc_sents = [sent for sent in doc.sents]
    sents_list = []
    for sent in doc.sents:
        sents_list.append(sent.text)
    results_list=[]
    for i in range(len(results)):
        results_list.append(results[i]['label'])
    fin_spans = list(zip(sents_list,results_list))
    return fin_spans    

    
demo = gr.Blocks()

with demo:

    audio_file = gr.inputs.Audio(source="microphone", type="filepath")
    b1 = gr.Button("Recognize Speech") 
    text = gr.Textbox()
    b1.click(speech_to_text, inputs=audio_file, outputs=text)
    
    b2 = gr.Button("Summarize Text")
    stext = gr.Textbox()
    b2.click(summarize_text, inputs=text, outputs=stext)
    
    b3 = gr.Button("Classify Overall Financial Sentiment")
    label = gr.Label()
    b3.click(text_to_sentiment, inputs=stext, outputs=label)
    
    b4 = gr.Button("Extract Companies & Segments")
    replaced_spans = gr.HighlightedText()
    b4.click(ner, inputs=text, outputs=replaced_spans)
    
    b5 = gr.Button("Extract Financial Sentiment")
    replaced_spans = gr.HighlightedText()
    b5.click(fin_ext, inputs=text, outputs=fin_spans)
    
demo.launch(share=True)