File size: 2,495 Bytes
7a7ebdf ff39d68 4240a50 560a994 58b2731 ff39d68 560a994 ff39d68 560a994 d250ad6 560a994 ff39d68 d02f0ba ff39d68 560a994 0e1f235 c319de9 0e1f235 58b2731 560a994 0e1f235 ff39d68 35b1732 ff39d68 35b1732 ff39d68 a212991 d250ad6 564ec1c d250ad6 560a994 35b1732 d250ad6 ff39d68 0e1f235 f5dc180 c319de9 0e1f235 560a994 ff39d68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import gradio as gr
import os
import spacy
nlp = spacy.load('en_core_web_sm')
auth_token = os.environ.get("HF_Token")
##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
def speech_to_text(speech):
text = asr(speech)["text"]
return text
##Summarization
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
stext = summarizer(text)
return stext
##Fiscal Sentiment
tokenizer = AutoTokenizer.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
audit_model = AutoModelForSequenceClassification.from_pretrained("demo-org/auditor_review_model",use_auth_token=auth_token)
nlp = pipeline("text-classification", model=audit_model, tokenizer=tokenizer)
def text_to_sentiment(text):
sentiment = nlp(text)[0]["label"]
return sentiment
##Company Extraction
def ner(text):
api = gr.Interface.load("dslim/bert-base-NER", src='models')
spans = api(text)
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
return spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
doc = nlp(text)
doc_sents = [sent for sent in doc.sents]
sents_list = []
for sent in doc.sents:
sents_list.append(sent.text)
results_list=[]
for i in range(len(results)):
results_list.append(results[i]['label'])
fin_spans = list(zip(sents_list,results_list))
return fin_spans
demo = gr.Blocks()
with demo:
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
b1 = gr.Button("Recognize Speech")
text = gr.Textbox()
b1.click(speech_to_text, inputs=audio_file, outputs=text)
b2 = gr.Button("Summarize Text")
stext = gr.Textbox()
b2.click(summarize_text, inputs=text, outputs=stext)
b3 = gr.Button("Classify Overall Financial Sentiment")
label = gr.Label()
b3.click(text_to_sentiment, inputs=stext, outputs=label)
b4 = gr.Button("Extract Companies & Segments")
replaced_spans = gr.HighlightedText()
b4.click(ner, inputs=text, outputs=replaced_spans)
b5 = gr.Button("Extract Financial Sentiment")
replaced_spans = gr.HighlightedText()
b5.click(fin_ext, inputs=text, outputs=fin_spans)
demo.launch(share=True) |