rafaaa2105
Fix downloading CivitAI models
c3967c0
raw
history blame
7.09 kB
import torch
from tqdm import tqdm
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline
import gradio as gr
import requests
import spaces
models_list = []
loras_list = ["None"]
models = {}
def download_file(url, filename, progress=gr.Progress(track_tqdm=True)):
response = requests.get(url, stream=True)
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(filename, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
print("ERROR, something went wrong")
def get_civitai_model_info(model_id):
url = f"https://civitai.com/api/v1/models/{model_id}"
response = requests.get(url)
if response.status_code != 200:
return None
return response.json()
def find_download_url(data, file_extension):
for file in data.get('modelVersions', [{}])[0].get('files', []):
if file['name'].endswith(file_extension):
return file['downloadUrl']
return None
def download_civitai_model(model_id, lora_id=""):
try:
model_data = get_civitai_model_info(model_id)
if model_data is None:
return f"Error: Model with ID {model_id} not found."
model_name = model_data['name']
model_ckpt_url = find_download_url(model_data, '.ckpt')
model_safetensors_url = find_download_url(model_data, '.safetensors')
model_url = model_ckpt_url or model_safetensors_url
if not model_url:
return f"Error: No suitable file found for model {model_name}."
file_extension = '.ckpt' if model_ckpt_url else '.safetensors'
download_file(model_url, f"{model_name}{file_extension}")
if lora_id:
lora_data = get_civitai_model_info(lora_id)
if lora_data is None:
return f"Error: LoRA with ID {lora_id} not found."
lora_name = lora_data['name']
lora_safetensors_url = find_download_url(lora_data, '.safetensors')
if not lora_safetensors_url:
return f"Error: No suitable file found for LoRA {lora_name}."
download_file(lora_safetensors_url, f"{lora_name}.safetensors")
loras_list.append(lora_name)
else:
lora_name = "None"
models_list.append(model_name)
return "Model/LoRA Downloaded!"
except Exception as e:
return f"Error downloading model or LoRA: {e}"
def load_model(model, lora="", use_lora=False):
try:
print(f"\n\nLoading {model}...")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipeline = StableDiffusionXLPipeline.from_pretrained(
model,
vae=vae,
torch_dtype=torch.float16,
)
if use_lora and lora != "":
pipeline.load_lora_weights(lora)
pipeline.to("cuda")
models[model] = pipeline
return "Model/LoRA loaded successfully!"
except Exception as e:
return f"Error loading model {model}: {e}"
@spaces.GPU
def generate_images(
model_name,
lora_name,
prompt,
negative_prompt,
num_inference_steps,
guidance_scale,
height,
width,
num_images=4,
progress=gr.Progress(track_tqdm=True)
):
if prompt is not None and prompt.strip() != "":
if lora_name == "None":
load_model(model_name, "", False)
elif lora_name in loras_list and lora_name != "None":
load_model(model_name, lora_name, True)
pipe = models.get(model_name)
if pipe is None:
return []
outputs = []
for _ in range(num_images):
output = pipe(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width
)["images"][0]
outputs.append(output)
return outputs
else:
return gr.Warning("Prompt empty!")
# Create the Gradio blocks
with gr.Blocks(theme='ParityError/Interstellar') as demo:
with gr.Row(equal_height=False):
with gr.Tab("Generate"):
with gr.Column(elem_id="input_column"):
with gr.Group(elem_id="input_group"):
model_dropdown = gr.Dropdown(choices=models_list, value=models_list[0] if models_list else None, label="Model", elem_id="model_dropdown")
lora_dropdown = gr.Dropdown(choices=loras_list, value=loras_list[0], label="LoRA")
prompt = gr.Textbox(label="Prompt", elem_id="prompt_textbox")
generate_btn = gr.Button("Generate Image", elem_id="generate_button")
with gr.Accordion("Advanced", open=False, elem_id="advanced_accordion"):
negative_prompt = gr.Textbox(label="Negative Prompt", value="lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", elem_id="negative_prompt_textbox")
num_inference_steps = gr.Slider(minimum=10, maximum=50, step=1, value=25, label="Number of Inference Steps", elem_id="num_inference_steps_slider")
guidance_scale = gr.Slider(minimum=1, maximum=20, step=0.5, value=7.5, label="Guidance Scale", elem_id="guidance_scale_slider")
height = gr.Slider(minimum=1024, maximum=2048, step=256, value=1024, label="Height", elem_id="height_slider")
width = gr.Slider(minimum=1024, maximum=2048, step=256, value=1024, label="Width", elem_id="width_slider")
num_images = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images", elem_id="num_images_slider")
with gr.Column(elem_id="output_column"):
output_gallery = gr.Gallery(label="Generated Images", height=480, scale=1, elem_id="output_gallery")
generate_btn.click(generate_images, inputs=[model_dropdown, lora_dropdown, prompt, negative_prompt, num_inference_steps, guidance_scale, height, width, num_images], outputs=output_gallery)
with gr.Tab("Download Custom Model"):
with gr.Group():
model_id = gr.Textbox(label="CivitAI Model ID")
lora_id = gr.Textbox(label="CivitAI LoRA ID (Optional)")
download_button = gr.Button("Download Model")
download_output = gr.Textbox(label="Download Output")
download_button.click(download_civitai_model, inputs=[model_id, lora_id], outputs=download_output)
demo.launch()